Topic 18
Binary Search Trees

"Yes. Shrubberies are my trade. | am a
shrubber. My name is 'Roger the Shrubber'. |
arrange, design, and sell shrubberies."

-Monty Python and The Holy Gralil

CS 307 Fundamentals of
Computer Science

The Problem with Linked Lists

» Accessing a item from a linked list takes
O(N) time for an arbitrary element

» Binary trees can improve upon this and
reduce access to O(log N) time for the
average case

» Expands on the binary search technique and
allows insertions and deletions

» Worst case degenerates to O(N) but this can
be avoided by using balanced trees (AVL,
Red-Black)

CS 307 Fundamentals of 2
Computer Science

Binary Search Trees

» A binary tree is a tree where each node has at
most two children, referred to as the left and right
child

> A binary search tree is a binary tree in which every
node's left subtree holds values less than the
node's value, and every right subtree holds values

greater than the node's value.

root
» A new node is added as a leaf.

parent

< >
left child @ right child
3

CS 307 Fundamentals of
Computer Science

Attendance Question 1

» After adding N distinct elements in random
order to a Binary Search Tree what is the
expected height of the tree?

A O(N1/2)
B. Of(logN)
C. O(N)

D. O(NlogN)
E O(N?)

CS 307 Fundamentals of
Computer Science

Implementation of Binary Node

public class BSTNode

{ private Comparable myData;
private BSTNode myLeft;
private BSTNode myRightC;

public BinaryNode (Comparable i1item)
{ myData = item; }

public Object getValue ()
{ return myData; }

public BinaryNode getLeft ()
{ return myLeft; }

public BinaryNode getRight ()
{ return myRight; }

public void setlLeft (BSTNode b)
{ myLeft = b; }
// setRight not shown

}
CS 307 Fundamentals of
Computer Science

Sample Insertion

» 100, 164, 130, 189, 244, 42, 141, 231, 20, 153
(from HotBits: www.fourmilab.ch/hotbits/)

If you insert 1000 random numbers into a BST using
the naive algorithm what is the expected height of the
tree”? (Number of links from root to deepest leaf.)

CS 307 Fundamentals of 6
Computer Science

Worst Case Performance

» In the worst case a BST can degenerate into
a singly linked list.

» Performance goes to O(N)
»2357111317

CS 307 Fundamentals of 7
Computer Science

More on Implementation

» Many ways to implement BSTs

» Using nodes is just one and even then many
options and choices

public class BilnarySearchTree
{ private TreeNode root;
private int size;

public BinarySearchTree ()
{ root = null;
size = 0;

}

CS 307 Fundamentals of 8
Computer Science

Add an Element, Recursive

CS 307 Fundamentals of
Computer Science

Add an Element, lterative

CS 307 Fundamentals of
Computer Science

10

Attendance Question 2

» What is the best case and worst case Big O
to add N elements to a binary search tree?

Best Worst
A. O(N) O(N)
B. O(NlogN) O(NlogN)
C. O(N) O(NlogN)
D. O(NlogN) O(N?)
E O(N?) O(N?)

CS 307 Fundamentals of 11
Computer Science

Performance of Binary Trees

» For the three core operations (add, access,
remove) a binary search tree (BST) has an
average case performance of O(log N)

» Even when using the naive insertion /
removal algorithms

» no checks to maintain balance

» balance achieved based on the randomness
of the data inserted

CS 307 Fundamentals of 12
Computer Science

Remove an Element

» Three cases
— node is a leaf, O children (easy)
— node has 1 child (easy)
— node has 2 children (interesting)

CS 307 Fundamentals of
Computer Science

13

Properties of a BST

» The minimum value is in the left
most node

» The maximum value is in the right
most node

—useful when removing an element
from the BST

> An inorder traversal of a BST
provides the elements of the BST In
ascending order

CS 307 Fundamentals of 14
Computer Science

Using Polymorphism

» Examples of dynamic data structures have
relied on null terminated ends.

— Use null to show end of list, no children

> Alternative form
— use structural recursion and polymorphism

CS 307 Fundamentals of 15
Computer Science

BST Interface

public interface BST {
public int size();
public boolean contains(Comparable obj);
public boolean add(Comparable obj);

CS 307 Fundamentals of
Computer Science

16

EmptyBST

public class EmptyBST implements BST {
private static EmptyBST theOne = new EmptyBST();
private EmptyBST(){}
public static EmptyBST getEmptyBST(){ return theOne; }
public NEBST add(Comparable obj) { return new NEBST(obj); }
public boolean contains(Comparable obj) { return false; }

public int size() { return 0; }

CS 307 Fundamentals of
Computer Science

17

Non Empty BST — Part 1

public class NEBST implements BST {

private Comparable data;
private BST left;
private BST right;

public NEBST(Comparable d){
data = d;
right = EmptyBST.getEmptyBST();
left = EmptyBST.getEmptyBST();
}

public BST add(Comparable obj) {
int val = obj.compareTo(data);
if(val<0)
left = left.add(obj);
else if(val > 0)
right = right.add(obj);
return this;

}

CS 307 Fundamentals of
Computer Science

18

Non Empty BST — Part 2

public boolean contains(Comparable obj){
int val = obj.compareTo(data);
if(val==0)
return true;
else if (val < 0)
return left.contains(obj);
else
return right.contains(obj);
}

public int size() {
return 1 + left.size() + right.size();

}

CS 307 Fundamentals of
Computer Science

19

