
Topic 6Topic 6
Inheritance andInheritance and 
Polymorphism

"Question: What is the object oriented way of 
getting rich?
Answer: Inheritance.“

“Inheritance is new code that reuses old codeInheritance is new code that reuses old code.
Polymorphism is old code that reuses new code.”

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

1

Outline
��Explanation of inheritance.
�Using inheritance to create a SortedIntList.
�Explanation of polymorphism.
�Using polymorphism to make a more genericUsing polymorphism to make a more generic 

List class.

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

2

Explanation of InheritanceExplanation of Inheritance

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

3

Main Tenets of OO Programming
�Encapsulation

– abstraction, information hidingabs ac o , o a o d g
�Inheritance

code reuse specialization "New code using old– code reuse, specialization New code using old 
code."

�Polymorphism�Polymorphism
– do X for a collection of various types of objects, 

where X is different depending on the type ofwhere X is different depending on the type of  
object

– "Old code using new code "
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

4

Old code using new code.



Things and Relationships
�Obj t i t d i l d t�Object oriented programming leads to 

programs that are models
ti d l f thi i th l ld– sometimes models of things in the real world

– sometimes models of contrived or imaginary things
�There are many types of relationships between�There are many types of relationships between 

the things in the models
chess piece has a position– chess piece has a position

– chess piece has a color
chess piece moves (changes position)– chess piece moves (changes position)

– chess piece is taken
– a rook is a type of chess piece
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

5

a rook is a type of chess piece

The “has-A” Relationship
��Objects are often made up of many parts or 

have sub data.
– chess piece: position, color
– die: result, number of sides

�This “has-a” relationship is modeled by 
compositionp
– the instance variables or fields internal to objects

�Encapsulation captures this conceptEncapsulation captures this concept

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

6

The “is-a” relationship
��Another type of relationship found in the real 

world
– a rook is a chess piece
– a queen is a chess piece
– a student is a person
– a faculty member is a person
– an undergraduate student is a student

�“is-a” usually denotes some form ofis a  usually denotes some form of 
specialization

�it is not the same as “has-a”
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

7

it is not the same as has-a

Inheritance
��The “is-a” relationship, and the specialization 

that accompanies it, is modeled in object 
oriented languages via inheritance

�Classes can inherit from other classes
– base inheritance in a program on the real world 

things being modeled
– does “an A is a B” make sense? Is it logical?

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

8



Nomenclature of Inheritance
�I J th t d k d i d i th�In Java the extends keyword is used in the 

class header to specify which preexisting class 
a new class is inheriting froma e c ass s e g o
public class Student extends Person

�Person is said to be 
h l f S d– the parent class of Student

– the super class of Student
– the base class of Student
– an ancestor of Student

�Student is said to be
– a child class of Person
– a sub class of Person
– a derived class of Person
– a descendant of Person

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

9

Results of Inheritance
public class A
public class B extends A
�the sub class inherits (gains) all instance 

variables and instance methods of the super a ab es a d sta ce et ods o t e supe
class, automatically

�additional methods can be added to class Badditional methods can be added to class B 
(specialization)

�the sub class can replace (redefine�the sub class can replace (redefine, 
override) methods from the super class

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

10

Attendance Question 1
What is the primary reason for using 
inheritance when programming?

A. To make a program more complicated
B. To duplicate code between classes
C To reuse pre-existing codeC. To reuse pre-existing code
D. To hide implementation details of a class
EE. To ensure pre conditions of methods are met.

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

11

Inheritance in Java
� Java is a pure object oriented languageJava is a pure object oriented language
� all code is part of some class
� all classes except one must inherit from� all classes, except one, must inherit from 

exactly one other class
� The Object class is the cosmic super classThe Object class is the cosmic super class

– The Object class does not inherit from any other class
– The Object class has several important methods:

toString, equals, hashCode, clone, getClass
� implications:

all classes are descendants of Object– all classes are descendants of Object
– all classes and thus all objects have a toString, 

equals, hashCode, clone, and getClass method

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

12

• toString, equals, hashCode, clone normally overridden



Inheritance in Java
�If l h d d t i l d th�If a class header does not include the 

extends clause the class extends the 
Obj t class by defaultObject class by default
public class Die

i ll l– Object is an ancestor to all classes
– it is the only class that does not extend some 

th lother class
�A class extends exactly one other class

– extending two or more classes is multiple 
inheritance. Java does not support this directly, 

th it I t f
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

13

rather it uses Interfaces.

Overriding methods
�any method that is not final may be 

overridden by a descendant classy
�same signature as method in ancestor
�may not reduce visibility�may not reduce visibility
�may use the original method if simply want to 

dd b h i t i tiadd more behavior to existing

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

14

Attendance Question 2
What is output when the main method is run?
public class Foo{

public static void main(String[] args){
Foo f1 = new Foo();
System.out.println( f1.toString() );

}
}}

A. 0
B nullB. null
C. Unknown until code is actually run.
D. No output due to a syntax error.
E. No output due to a runtime error.

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

15

p

Shape Classes
�D l l ll d�Declare a class called ClosedShape

– assume all shapes have x and y coordinates
– override Object's version of toString

�Possible sub classes of ClosedShape
– Rectangle

– Circle

– Ellipse

– SquareSquare

�Possible hierarchy
ClosedShape < Rectangle < Square

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

16

ClosedShape <- Rectangle <- Square



A ClosedShape class
public class ClosedShape p p
{  private double myX;

private double myY;

public ClosedShape()public ClosedShape()
{  this(0,0); }

public ClosedShape (double x, double y)
{ myX x;{  myX = x;   

myY = y;  
}

bli i i ()public String toString()
{ return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }p g y
public double getY(){ return myY; }

}
// Other methods not shown

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

17

Constructors
�Constructors handle initialization of objects�Constructors handle initialization of objects
�When creating an object with one or more ancestors (every 

type except Object) a chain of constructor calls takes placeyp p j ) p
�The reserved word super may be used in a constructor to 

call a one of the parent's constructors
t b fi t li f t t– must be first line of constructor

� if no parent constructor is explicitly called the default, 0 
parameter constructor of the parent is calledp p
– if no default constructor exists a syntax error results

� If a parent constructor is called another constructor in the 
same class ma no be calledsame class may no be called 
– no super();this(); allowed. One or the other, not both
– good place for an initialization method

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

18

A Rectangle Constructor
public class Rectangle extends ClosedShape
{  private double myWidth;

private double myHeight;

public Rectangle( double x, double y, 
double width, double height )g

{   super(x,y);
// calls the 2 double constructor in
// ClosedShapep
myWidth = width;
myHeight = height;

}

// other methods not shown

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

19
}

A Rectangle Class
public class Rectangle extends ClosedShape
{  private double myWidth;

private double myHeight;

public Rectangle()
{ this(0 0);{  this(0, 0);
}

public Rectangle(double width, double height)
{  myWidth = width;

myHeight = height;
}

public Rectangle(double x, double y,
double width double height)double width, double height)

{ super(x, y);
myWidth = width;
myHeight = height;

} 

public String toString()
{  return super.toString() + " width " + myWidth

+ " height " + myHeight;
}

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

20

}
}



The Keyword super
�super is used to access something (any protected or 

public field or method) from the super class that has 
been overriddenbeen overridden

�Rectangle's toString makes use of the toString in 
ClosedShape my calling super.toString()

�without the super calling toString would result in 
infinite recursive calls

�J d t ll t d�Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically thisresults in a syntax error even though technically this 
refers to a valid method, Object's toString

�Rectangle partially overrides ClosedShapes toString

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

21

Initialization method
public class Rectangle extends ClosedShapepublic class Rectangle extends ClosedShape
{  private double myWidth;

private double myHeight;

public Rectangle()public Rectangle()
{  init(0, 0);
}

public Rectangle(double width, double height)public Rectangle(double width, double height)
{  init(width, height);
}

public Rectangle(double x double ypublic Rectangle(double x, double y,
double width, double height)

{  super(x, y);
init(width, height);

}}

private void init(double width, double height)
{  myWidth = width;

myHeight = height;

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

22

myHeight = height;
}

Result of Inheritance
Do an of these ca se a s nta error?Do any of these cause a syntax error?
What is the output?
Rectangle r = new Rectangle(1, 2, 3, 
4);
ClosedShape s = new CloseShape(2, 3);p p ,
System.out.println( s.getX() );
System.out.println( s.getY() );
System out println( s toString() );System.out.println( s.toString() ); 
System.out.println( r.getX() );
System.out.println( r.getY() );y p ( g () )
System.out.println( r.toString() ); 
System.out.println( r.getWidth() );

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

23

The Real Picture
Fields from Object classFields from Object class

Instance variables 
declared in Object

Fields from ClosedShape class

declared in Object

A
Instance Variables declared in 
ClosedShape

A 
Rectangle
object p

Available
methods Fields from Rectangle class
are all methods
from Object, 
ClosedShape, 
and Rectangle

Instance Variables declared in 
Rectangle

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

24

and Rectangle



Access Modifiers and 
InheritanceInheritance

�public
– accessible to all classesaccessible to all classes

�private
– accessible only within that class. Hidden from all sub y

classes.
�protected

ibl b l ithi th k d ll– accessible by classes within the same package and all 
descendant classes

�Instance variables should be privatep
�protected methods are used to allow descendant 

classes to modify instance variables in ways other 
l 't

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

25

classes can't

Why private Vars and not protected?
�In general it is good practice to make 

instance variables privateinstance variables private
– hide them from your descendants

if thi k d d t ill d t– if you think descendants will need to access 
them or modify them provide protected methods 
to do thisto do this

�Why?
��Consider the following example

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

26

Required update
public class GamePiece
{ private Board myBoard;

private Position myPos;private Position myPos;

// whenever my position changes I musty p g
// update the board so it knows about the change

protected void alterPos( Position newPos )
{ Position oldPos = myPos;

myPos = newPos;myPos  newPos;
myBoard.update( oldPos, myPos );

}

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

27

Creating a SortedIntListCreating a SortedIntList

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

28



A New Class
��Assume we want to have a list of ints, but 

that the ints must always be maintained in 
ascending order
[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min
sortedList.get( list.size() – 1 )

returns the max

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

29

Implementing SortedIntList
��Do we have to write a whole new class?
�Assume we have an IntList class.
�Which of the following methods would have 

to be changed?to be c a ged
add(int value)

int get(int location)int get(int location)

String toString()

int size()int size()

int remove(int location)

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

30

Overriding the add Method
��First attempt
�Problem?
�solving with protected

– What protected really meansWhat protected really means

�solving with insert method
double edged sort– double edged sort

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

31

Problems
��What about this method?
void insert(int location, int val)

�What about this method?
void insertAll(int locationvoid insertAll(int location,

IntList otherList)

�SortedIntList is not the cleanest�SortedIntList is not the cleanest 
application of inheritance.

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

32



Explanation of PolymorphismExplanation of Polymorphism

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

33

Polymorphism
�A th f t f OOP�Another feature of OOP
�literally “having many forms”
�object variables in Java are polymorphic
�object variables can refer to objects or their 

declared type AND any objects that are 
descendants of the declared type
ClosedShape s = new 
ClosedShape();

R t l () // l l!s = new Rectangle(); // legal!
s = new Circle(); //legal!
Obj t bj1 // h t?

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

34

Object obj1; // = what?

Data Type
� bj t i bl h�object variables have:

– a declared type. Also called the static type.
d i t Wh t i th t l t f th– a dynamic type. What is the actual type of the 

pointee at run time or when a particular 
statement is executed.statement is executed.

�Method calls are syntactically legal if the 
method is in the declared type or any e od s e dec a ed ype o a y
ancestor of the declared type

�The actual method that is executed at 
runtime is based on the dynamic type
– dynamic dispatch

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

35

y p

Attendance Question 3
Consider the following class declarations:
public class BoardSpace
public class Property extends BoardSpacepublic class Property extends BoardSpace
public class Street extends Property
public class Railroad extends Property

Which of the following statements would cause a syntaxWhich of the following statements would cause a syntax 
error? Assume all classes have a default constructor.

A. Object obj = new Railroad();
B. Street s = new BoardSpace();
C. BoardSpace b = new Street();
D. Railroad r = new Street();
E. More than one of these

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

36



What’s the Output?
ClosedShape s = new ClosedShape(1,2);
System.out.println( s.toString() );
s ne Rectangle(2 3 4 5)s = new Rectangle(2, 3, 4, 5);
System.out.println( s.toString() );
s = new Circle(4, 5, 10);s  new Circle(4, 5, 10);
System.out.println( s.toString() );
s = new ClosedShape();
System.out.println( s.toString() );

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

37

Method LookUp
�To determine if a method is legal the compiler looks in the 

class based on the declared type
– if it finds it great, if not go to the super class and look thereif it finds it great, if not go to the super class and look there
– continue until the method is found, or the Object class is reached 

and the method was never found. (Compile error)
�To determine which method is actually executed the runTo determine which method is actually executed the run 

time system
– starts with the actual run time class of the object that is calling the 

methodmethod
– search the class for that method
– if found, execute it, otherwise go to the super class and keep looking
– repeat until a version is foundrepeat until a version is found

� Is it possible the runtime system won’t find a method?

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

38

Attendance Question 4
What is output by theWhat is output by the 
code to the right when 
run?

public class Animal{
public String bt(){ return "!"; }

}

A. !!live
B. !eggegg

public class Mammal extends Animal{

public String bt(){ return "live"; }

}gg gg
C. !egglive
D !!!

public class Platypus extends Mammal{
public String bt(){ return "egg";}

}D. !!!
E. eggegglive

}

Animal a1 = new Animal();
Animal a2 = new Platypus();

Mammal m1 = new Platypus();
System.out.print( a1.bt() );
System.out.print( a2.bt() );

System.out.print( m1.bt() );

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

39

Why Bother?
�I h it ll t d l�Inheritance allows programs to model 

relationships in the real world
if th f ll th d l it b i– if the program follows the model it may be easier 
to write

�Inheritance allows code reuse�Inheritance allows code reuse
– complete programs faster (especially large 

programs)programs)
�Polymorphism allows code reuse in another 

way (We will explore this next time)y ( p )
�Inheritance and polymorphism allow 

programmers to create generic algorithms
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

40

p g g g



Genericity
�O f th l f OOP i th t f�One of the goals of OOP is the support of 

code reuse to allow more efficient program 
developmentdevelopment

�If a algorithm is essentially the same, but the 
code would vary based on the data typecode would vary based on the data type 
genericity allows only a single version of that 
code to existcode to exist
– some languages support genericity via templates
– in Java, there are 2 ways of doing thisin Java, there are 2 ways of doing this

• polymorphism and the inheritance requirement
• generics

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

41

the createASet example
public Object[] createASet(Object[] items)
{ /* 

pre: items != null, no elements
of items = null
post: return an array of Objectspost: return an array of Objects 
that represents a set of the elements
in items. (all duplicates removed)
/*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

42

createASet examples
String[] sList = {"Texas", "texas", "Texas", 

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println( sSet[i] );

Object[] list = {"Hi", 1, 4, 3.3, true, 
new ArrayList(), "Hi", 3.3, 4};

Object[] set createASet(list);Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println( set[i] );

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

43

A Generic List ClassA Generic List Class

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

44



Back to IntList
�W fi d f l b t h t if�We may find IntList useful, but what if we 

want a List of Strings? Rectangles? 
?Lists?

– What if I am not sure?
�Are the List algorithms going to be very 

different if I am storing Strings instead of 
ints?

�How can we make a generic List class?How can we make a generic List class?

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

45

Generic List Class
��required changes
�How does toString have to change?

– why?!?!
– A good example of why keyword this is g p y y

necessary from toString
�What can a List hold now?
�How many List classes do I need?

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

46

Writing an equals Method
��How to check if two objects are equal?
if(objA == objA)

// does this work?

�Why not thisWhy not this
public boolean equals(List other)

�B�Because
public void foo(List a, Object b)

if( a.equals(b) )
System.out.println( same )

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

47
– what if b is really a List?

equals method 
��read the javadoc carefully!
�don't rely on toString and String's equal
�lost of cases

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

48


