
Topic 6Topic 6
Inheritance andInheritance and 
Polymorphism

"Question: What is the object oriented way of 
getting rich?
Answer: Inheritance.“

“Inheritance is new code that reuses old codeInheritance is new code that reuses old code.
Polymorphism is old code that reuses new code.”
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Outline
��Explanation of inheritance.
�Using inheritance to create a SortedIntList.
�Explanation of polymorphism.
�Using polymorphism to make a more genericUsing polymorphism to make a more generic 

List class.
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Explanation of InheritanceExplanation of Inheritance
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Main Tenets of OO Programming
�Encapsulation

– abstraction, information hidingabs ac o , o a o d g
�Inheritance

code reuse specialization "New code using old– code reuse, specialization New code using old 
code."

�Polymorphism�Polymorphism
– do X for a collection of various types of objects, 

where X is different depending on the type ofwhere X is different depending on the type of  
object

– "Old code using new code "
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

4

Old code using new code.



Things and Relationships
�Obj t i t d i l d t�Object oriented programming leads to 

programs that are models
ti d l f thi i th l ld– sometimes models of things in the real world

– sometimes models of contrived or imaginary things
�There are many types of relationships between�There are many types of relationships between 

the things in the models
chess piece has a position– chess piece has a position

– chess piece has a color
chess piece moves (changes position)– chess piece moves (changes position)

– chess piece is taken
– a rook is a type of chess piece
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a rook is a type of chess piece

The “has-A” Relationship
��Objects are often made up of many parts or 

have sub data.
– chess piece: position, color
– die: result, number of sides

�This “has-a” relationship is modeled by 
compositionp
– the instance variables or fields internal to objects

�Encapsulation captures this conceptEncapsulation captures this concept
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The “is-a” relationship
��Another type of relationship found in the real 

world
– a rook is a chess piece
– a queen is a chess piece
– a student is a person
– a faculty member is a person
– an undergraduate student is a student

�“is-a” usually denotes some form ofis a  usually denotes some form of 
specialization

�it is not the same as “has-a”
CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

7

it is not the same as has-a

Inheritance
��The “is-a” relationship, and the specialization 

that accompanies it, is modeled in object 
oriented languages via inheritance

�Classes can inherit from other classes
– base inheritance in a program on the real world 

things being modeled
– does “an A is a B” make sense? Is it logical?
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Nomenclature of Inheritance
�I J th t d k d i d i th�In Java the extends keyword is used in the 

class header to specify which preexisting class 
a new class is inheriting froma e c ass s e g o
public class Student extends Person

�Person is said to be 
h l f S d– the parent class of Student

– the super class of Student
– the base class of Student
– an ancestor of Student

�Student is said to be
– a child class of Person
– a sub class of Person
– a derived class of Person
– a descendant of Person
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Results of Inheritance
public class A
public class B extends A
�the sub class inherits (gains) all instance 

variables and instance methods of the super a ab es a d sta ce et ods o t e supe
class, automatically

�additional methods can be added to class Badditional methods can be added to class B 
(specialization)

�the sub class can replace (redefine�the sub class can replace (redefine, 
override) methods from the super class
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Attendance Question 1
What is the primary reason for using 
inheritance when programming?

A. To make a program more complicated
B. To duplicate code between classes
C To reuse pre-existing codeC. To reuse pre-existing code
D. To hide implementation details of a class
EE. To ensure pre conditions of methods are met.
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Inheritance in Java
� Java is a pure object oriented languageJava is a pure object oriented language
� all code is part of some class
� all classes except one must inherit from� all classes, except one, must inherit from 

exactly one other class
� The Object class is the cosmic super classThe Object class is the cosmic super class

– The Object class does not inherit from any other class
– The Object class has several important methods:

toString, equals, hashCode, clone, getClass
� implications:

all classes are descendants of Object– all classes are descendants of Object
– all classes and thus all objects have a toString, 

equals, hashCode, clone, and getClass method
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• toString, equals, hashCode, clone normally overridden



Inheritance in Java
�If l h d d t i l d th�If a class header does not include the 

extends clause the class extends the 
Obj t class by defaultObject class by default
public class Die

i ll l– Object is an ancestor to all classes
– it is the only class that does not extend some 

th lother class
�A class extends exactly one other class

– extending two or more classes is multiple 
inheritance. Java does not support this directly, 

th it I t f
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rather it uses Interfaces.

Overriding methods
�any method that is not final may be 

overridden by a descendant classy
�same signature as method in ancestor
�may not reduce visibility�may not reduce visibility
�may use the original method if simply want to 

dd b h i t i tiadd more behavior to existing

CS 307 Fundamentals of 
Computer Science Inheritance and Polymorphism

14

Attendance Question 2
What is output when the main method is run?
public class Foo{

public static void main(String[] args){
Foo f1 = new Foo();
System.out.println( f1.toString() );

}
}}

A. 0
B nullB. null
C. Unknown until code is actually run.
D. No output due to a syntax error.
E. No output due to a runtime error.
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Shape Classes
�D l l ll d�Declare a class called ClosedShape

– assume all shapes have x and y coordinates
– override Object's version of toString

�Possible sub classes of ClosedShape
– Rectangle

– Circle

– Ellipse

– SquareSquare

�Possible hierarchy
ClosedShape < Rectangle < Square
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ClosedShape <- Rectangle <- Square



A ClosedShape class
public class ClosedShape p p
{  private double myX;

private double myY;

public ClosedShape()public ClosedShape()
{  this(0,0); }

public ClosedShape (double x, double y)
{ myX x;{  myX = x;   

myY = y;  
}

bli i i ()public String toString()
{ return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }p g y
public double getY(){ return myY; }

}
// Other methods not shown
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Constructors
�Constructors handle initialization of objects�Constructors handle initialization of objects
�When creating an object with one or more ancestors (every 

type except Object) a chain of constructor calls takes placeyp p j ) p
�The reserved word super may be used in a constructor to 

call a one of the parent's constructors
t b fi t li f t t– must be first line of constructor

� if no parent constructor is explicitly called the default, 0 
parameter constructor of the parent is calledp p
– if no default constructor exists a syntax error results

� If a parent constructor is called another constructor in the 
same class ma no be calledsame class may no be called 
– no super();this(); allowed. One or the other, not both
– good place for an initialization method
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A Rectangle Constructor
public class Rectangle extends ClosedShape
{  private double myWidth;

private double myHeight;

public Rectangle( double x, double y, 
double width, double height )g

{   super(x,y);
// calls the 2 double constructor in
// ClosedShapep
myWidth = width;
myHeight = height;

}

// other methods not shown
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A Rectangle Class
public class Rectangle extends ClosedShape
{  private double myWidth;

private double myHeight;

public Rectangle()
{ this(0 0);{  this(0, 0);
}

public Rectangle(double width, double height)
{  myWidth = width;

myHeight = height;
}

public Rectangle(double x, double y,
double width double height)double width, double height)

{ super(x, y);
myWidth = width;
myHeight = height;

} 

public String toString()
{  return super.toString() + " width " + myWidth

+ " height " + myHeight;
}
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}
}



The Keyword super
�super is used to access something (any protected or 

public field or method) from the super class that has 
been overriddenbeen overridden

�Rectangle's toString makes use of the toString in 
ClosedShape my calling super.toString()

�without the super calling toString would result in 
infinite recursive calls

�J d t ll t d�Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically thisresults in a syntax error even though technically this 
refers to a valid method, Object's toString

�Rectangle partially overrides ClosedShapes toString
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Initialization method
public class Rectangle extends ClosedShapepublic class Rectangle extends ClosedShape
{  private double myWidth;

private double myHeight;

public Rectangle()public Rectangle()
{  init(0, 0);
}

public Rectangle(double width, double height)public Rectangle(double width, double height)
{  init(width, height);
}

public Rectangle(double x double ypublic Rectangle(double x, double y,
double width, double height)

{  super(x, y);
init(width, height);

}}

private void init(double width, double height)
{  myWidth = width;

myHeight = height;
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myHeight = height;
}

Result of Inheritance
Do an of these ca se a s nta error?Do any of these cause a syntax error?
What is the output?
Rectangle r = new Rectangle(1, 2, 3, 
4);
ClosedShape s = new CloseShape(2, 3);p p ,
System.out.println( s.getX() );
System.out.println( s.getY() );
System out println( s toString() );System.out.println( s.toString() ); 
System.out.println( r.getX() );
System.out.println( r.getY() );y p ( g () )
System.out.println( r.toString() ); 
System.out.println( r.getWidth() );
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The Real Picture
Fields from Object classFields from Object class

Instance variables 
declared in Object

Fields from ClosedShape class

declared in Object

A
Instance Variables declared in 
ClosedShape

A 
Rectangle
object p

Available
methods Fields from Rectangle class
are all methods
from Object, 
ClosedShape, 
and Rectangle

Instance Variables declared in 
Rectangle
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and Rectangle



Access Modifiers and 
InheritanceInheritance

�public
– accessible to all classesaccessible to all classes

�private
– accessible only within that class. Hidden from all sub y

classes.
�protected

ibl b l ithi th k d ll– accessible by classes within the same package and all 
descendant classes

�Instance variables should be privatep
�protected methods are used to allow descendant 

classes to modify instance variables in ways other 
l 't
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classes can't

Why private Vars and not protected?
�In general it is good practice to make 

instance variables privateinstance variables private
– hide them from your descendants

if thi k d d t ill d t– if you think descendants will need to access 
them or modify them provide protected methods 
to do thisto do this

�Why?
��Consider the following example
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Required update
public class GamePiece
{ private Board myBoard;

private Position myPos;private Position myPos;

// whenever my position changes I musty p g
// update the board so it knows about the change

protected void alterPos( Position newPos )
{ Position oldPos = myPos;

myPos = newPos;myPos  newPos;
myBoard.update( oldPos, myPos );

}
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Creating a SortedIntListCreating a SortedIntList
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A New Class
��Assume we want to have a list of ints, but 

that the ints must always be maintained in 
ascending order
[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min
sortedList.get( list.size() – 1 )

returns the max
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Implementing SortedIntList
��Do we have to write a whole new class?
�Assume we have an IntList class.
�Which of the following methods would have 

to be changed?to be c a ged
add(int value)

int get(int location)int get(int location)

String toString()

int size()int size()

int remove(int location)
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Overriding the add Method
��First attempt
�Problem?
�solving with protected

– What protected really meansWhat protected really means

�solving with insert method
double edged sort– double edged sort
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Problems
��What about this method?
void insert(int location, int val)

�What about this method?
void insertAll(int locationvoid insertAll(int location,

IntList otherList)

�SortedIntList is not the cleanest�SortedIntList is not the cleanest 
application of inheritance.
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Explanation of PolymorphismExplanation of Polymorphism
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Polymorphism
�A th f t f OOP�Another feature of OOP
�literally “having many forms”
�object variables in Java are polymorphic
�object variables can refer to objects or their 

declared type AND any objects that are 
descendants of the declared type
ClosedShape s = new 
ClosedShape();

R t l () // l l!s = new Rectangle(); // legal!
s = new Circle(); //legal!
Obj t bj1 // h t?
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Object obj1; // = what?

Data Type
� bj t i bl h�object variables have:

– a declared type. Also called the static type.
d i t Wh t i th t l t f th– a dynamic type. What is the actual type of the 

pointee at run time or when a particular 
statement is executed.statement is executed.

�Method calls are syntactically legal if the 
method is in the declared type or any e od s e dec a ed ype o a y
ancestor of the declared type

�The actual method that is executed at 
runtime is based on the dynamic type
– dynamic dispatch
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Attendance Question 3
Consider the following class declarations:
public class BoardSpace
public class Property extends BoardSpacepublic class Property extends BoardSpace
public class Street extends Property
public class Railroad extends Property

Which of the following statements would cause a syntaxWhich of the following statements would cause a syntax 
error? Assume all classes have a default constructor.

A. Object obj = new Railroad();
B. Street s = new BoardSpace();
C. BoardSpace b = new Street();
D. Railroad r = new Street();
E. More than one of these
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What’s the Output?
ClosedShape s = new ClosedShape(1,2);
System.out.println( s.toString() );
s ne Rectangle(2 3 4 5)s = new Rectangle(2, 3, 4, 5);
System.out.println( s.toString() );
s = new Circle(4, 5, 10);s  new Circle(4, 5, 10);
System.out.println( s.toString() );
s = new ClosedShape();
System.out.println( s.toString() );
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Method LookUp
�To determine if a method is legal the compiler looks in the 

class based on the declared type
– if it finds it great, if not go to the super class and look thereif it finds it great, if not go to the super class and look there
– continue until the method is found, or the Object class is reached 

and the method was never found. (Compile error)
�To determine which method is actually executed the runTo determine which method is actually executed the run 

time system
– starts with the actual run time class of the object that is calling the 

methodmethod
– search the class for that method
– if found, execute it, otherwise go to the super class and keep looking
– repeat until a version is foundrepeat until a version is found

� Is it possible the runtime system won’t find a method?
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Attendance Question 4
What is output by theWhat is output by the 
code to the right when 
run?

public class Animal{
public String bt(){ return "!"; }

}

A. !!live
B. !eggegg

public class Mammal extends Animal{

public String bt(){ return "live"; }

}gg gg
C. !egglive
D !!!

public class Platypus extends Mammal{
public String bt(){ return "egg";}

}D. !!!
E. eggegglive

}

Animal a1 = new Animal();
Animal a2 = new Platypus();

Mammal m1 = new Platypus();
System.out.print( a1.bt() );
System.out.print( a2.bt() );

System.out.print( m1.bt() );
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Why Bother?
�I h it ll t d l�Inheritance allows programs to model 

relationships in the real world
if th f ll th d l it b i– if the program follows the model it may be easier 
to write

�Inheritance allows code reuse�Inheritance allows code reuse
– complete programs faster (especially large 

programs)programs)
�Polymorphism allows code reuse in another 

way (We will explore this next time)y ( p )
�Inheritance and polymorphism allow 

programmers to create generic algorithms
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Genericity
�O f th l f OOP i th t f�One of the goals of OOP is the support of 

code reuse to allow more efficient program 
developmentdevelopment

�If a algorithm is essentially the same, but the 
code would vary based on the data typecode would vary based on the data type 
genericity allows only a single version of that 
code to existcode to exist
– some languages support genericity via templates
– in Java, there are 2 ways of doing thisin Java, there are 2 ways of doing this

• polymorphism and the inheritance requirement
• generics
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the createASet example
public Object[] createASet(Object[] items)
{ /* 

pre: items != null, no elements
of items = null
post: return an array of Objectspost: return an array of Objects 
that represents a set of the elements
in items. (all duplicates removed)
/*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}
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createASet examples
String[] sList = {"Texas", "texas", "Texas", 

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println( sSet[i] );

Object[] list = {"Hi", 1, 4, 3.3, true, 
new ArrayList(), "Hi", 3.3, 4};

Object[] set createASet(list);Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println( set[i] );
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A Generic List ClassA Generic List Class
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Back to IntList
�W fi d f l b t h t if�We may find IntList useful, but what if we 

want a List of Strings? Rectangles? 
?Lists?

– What if I am not sure?
�Are the List algorithms going to be very 

different if I am storing Strings instead of 
ints?

�How can we make a generic List class?How can we make a generic List class?
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Generic List Class
��required changes
�How does toString have to change?

– why?!?!
– A good example of why keyword this is g p y y

necessary from toString
�What can a List hold now?
�How many List classes do I need?
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Writing an equals Method
��How to check if two objects are equal?
if(objA == objA)

// does this work?

�Why not thisWhy not this
public boolean equals(List other)

�B�Because
public void foo(List a, Object b)

if( a.equals(b) )
System.out.println( same )
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– what if b is really a List?

equals method 
��read the javadoc carefully!
�don't rely on toString and String's equal
�lost of cases
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