
Topic Number 8op c u be 8
Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning
(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,

ft ith th lt th t th d boften with the result that the code becomes
incomprehensible."

The Hackers Dictionary version 4 4 7- The Hackers Dictionary, version 4.4.7

CS 307 Fundamentals of
Computer Science Algorithm Analysis

1

Is This Algorithm Fast?
��Problem: given a problem, how fast does this

code solve that problem?
�Could try to measure the time it takes, but

that is subject to lots of errors
– multitasking operating system
– speed of computerp p
– language solution is written in

CS 307 Fundamentals of
Computer Science Algorithm Analysis

2

Attendance Question 1
��"My program finds all the primes between 2

and 1,000,000,000 in 1.37 seconds."
– how good is this solution?

A. Good
B. Bad
C It dependsC. It depends

CS 307 Fundamentals of
Computer Science Algorithm Analysis

3

Grading Algorithms
��What we need is some way to grade

algorithms and their representation via
computer programs for efficiency
– both time and space efficiency are concerns
– are examples simply deal with time, not space

�The grades used to characterize the g
algorithm and code should be independent of
platform, language, and compilerp , g g , p
– We will look at Java examples as opposed to

pseudocode algorithms

CS 307 Fundamentals of
Computer Science Algorithm Analysis

4

Big O
��The most common method and notation for

discussing the execution time of algorithms is
"Big O"

�Big O is the asymptotic execution time of the
algorithm

�Big O is an upper boundsg O s a uppe bou ds
�It is a mathematical tool
�Hide a lot of unimportant details by assigning�Hide a lot of unimportant details by assigning

a simple grade (function) to algorithms

CS 307 Fundamentals of
Computer Science Algorithm Analysis

5

Typical Big O Functions – "Grades"
Function Common NameFunction Common Name

N! factorial

2N Exponential2 Exponential

Nd, d > 3 Polynomial

N3 Cubic

N2 Quadratic

N N N Square root N

N log N N log N

N Linear

N Root - n

log N Logarithmic

CS 307 Fundamentals of
Computer Science Algorithm Analysis

6

1 Constant

Big O Functions
��N is the size of the data set.
�The functions do not include less dominant

terms and do not include any coefficients.
�4N2 + 10N – 100 is not a valid F(N).0 00 s ot a a d ()

– It would simply be O(N2)
�It is possible to have two independent�It is possible to have two independent

variables in the Big O function.
example O(M + log N)– example O(M + log N)

– M and N are sizes of two different, but interacting
data sets

CS 307 Fundamentals of
Computer Science Algorithm Analysis

7

data sets

Actual vs. Big O

Simplified
Time
for

p

algorithm
to

l t

Actual

complete

Amount of data

CS 307 Fundamentals of
Computer Science Algorithm Analysis

8

Formal Definition of Big O
��T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)
when N > N0
– N is the size of the data set the algorithm works on
– T(N) is a function that characterizes the actual

running time of the algorithm
– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithm (The t pical Big f nctions table)the algorithm. (The typical Big functions table)

– c and N0 are constants

CS 307 Fundamentals of
Computer Science Algorithm Analysis

9

What it Means
��T(N) is the actual growth rate of the

algorithm
– can be equated to the number of executable

statements in a program or chunk of code
�F(N) is the function that bounds the growth

rate
– may be upper or lower bound

�T(N) may not necessarily equal F(N)() y y q ()
– constants and lesser terms ignored because it is

a bounding function

CS 307 Fundamentals of
Computer Science Algorithm Analysis

10

g

Yuck
�H d l h d fi i i ?�How do you apply the definition?
�Hard to measure time without running programs

d th t i f ll f i iand that is full of inaccuracies
�Amount of time to complete should be directly

proportional to the number of statements executedproportional to the number of statements executed
for a given amount of data

�Count up statements in a program or method or�Count up statements in a program or method or
algorithm as a function of the amount of data
– This is one techniqueThis is one technique

�Traditionally the amount of data is signified by the
variable N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

11

Counting Statements in Code
��So what constitutes a statement?
�Can’t I rewrite code and get a different

answer, that is a different number of
statements?

�Yes, but the beauty of Big O is, in the end
you get the same answeryou ge e sa e a s e
– remember, it is a simplification

CS 307 Fundamentals of
Computer Science Algorithm Analysis

12

Assumptions in For Counting Statements
�Once found accessing the value of a primitive isOnce found accessing the value of a primitive is

constant time. This is one statement:
x = y; //one statement

�mathematical operations and comparisons in
boolean expressions are all constant time.
x = y * 5 + z % 3; // one statement

�if statement constant time if test and maximum time
for each alternative are constants
if(iMySuit == DIAMONDS || iMySuit == HEARTS)

return RED;return RED;

else

return BLACK;

// 2 t t t (b l i 1 t)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

13

// 2 statements (boolean expression + 1 return)

Counting Statements in Loops
Attendenance Question 2Attendenance Question 2

�Counting statements in loops often requires
a bit of informal mathematical induction

�What is output by the following code?
int total = 0;
for(int i = 0; i < 2; i++)

total += 5;
System.out.println(total);

A. 2 B. 5 C. 10 D. 15 E. 20

CS 307 Fundamentals of
Computer Science Algorithm Analysis

14

Attendances Question 3
�What is output by the following code?What is output by the following code?
int total = 0;
// assume limit is an int >= 0
for(int i = 0; i < limit; i++)

total += 5;
System.out.println(total);

A. 0
B. limit
C limit * 5C. limit 5
D. limit * limit
E li it5E. limit5

CS 307 Fundamentals of
Computer Science Algorithm Analysis

15

Counting Statements
in Nested Loopsin Nested Loops

Attendance Question 4
�What is output by the following code?What is output by the following code?
int total = 0;
for(int i = 0; i < 2; i++)

for(int j 0; j < 2; j++)for(int j = 0; j < 2; j++)
total += 5;

System.out.println(total);
A. 0
B. 10
C 20C. 20
D. 30
E. 40

CS 307 Fundamentals of
Computer Science Algorithm Analysis

16

Attendance Question 5
�What is output by the following code?What is output by the following code?
int total = 0;
// assume limit is an int >= 0
f (i t i 0 i < li it i++)for(int i = 0; i < limit; i++)

for(int j = 0; j < limit; j++)
total += 5;

System.out.println(total);

A. 5
B. limit * limit
C limit * limit * 5C. limit limit 5
D. 0
E li it5E. limit5

CS 307 Fundamentals of
Computer Science Algorithm Analysis

17

Loops That Work on a Data Set
��The number of executions of the loop

depends on the length of the array, values.
public int total(int[] values)
{ int result = 0;

for(int i = 0; i < values length; i++)for(int i = 0; i < values.length; i++)
result += values[i];

return result;
}

�How many many statements are executed
b h b h d

}

by the above method
�N = values.length. What is T(N)? F(N)?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

18

Counting Up Statements
�int result = 0; 1 time
�int i = 0; 1 time
�i < values.length; N + 1 times
�i++ N timesi++ N times
�result += values[i]; N times

1 i�return total; 1 time
�T(N) = 3N + 4
�F(N) = N
�Big O = O(N)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

19

Big O = O(N)

Showing O(N) is Correct
��Recall the formal definition of Big O

– T(N) is O(F(N)) if there are positive constants c
and N0 such that T(N) < cF(N) when N > N0

�In our case given T(N) = 3N + 4, prove the
method is O(N).
– F(N) is N

�We need to choose constants c and N0

�how about c = 4 N0 = 5 ?how about c 4, N0 5 ?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

20

vertical axis: time for algorithm to complete. (approximate with
number of executable statements)

c * F(N) in this casec F(N), in this case,
c = 4, c * F(N) = 4N

T(N), actual function of time.
In this case 3N + 4In this case 3N + 4

F(N), approximate function
of time. In this case N

horizontal axis: N number of elements in data set

No = 5

CS 307 Fundamentals of
Computer Science Algorithm Analysis

21

horizontal axis: N, number of elements in data set

Attendance Question 6
��Which of the following is true?
A. Method total is O(N)
B. Method total is O(N2)
C Method total is O(N!)C. Method total is O(N!)
D. Method total is O(NN)
E All f h bE. All of the above are true

CS 307 Fundamentals of
Computer Science Algorithm Analysis

22

Just Count Loops, Right?
// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns

int numThings = 0;g ;
for(int r = row - 1; r <= row + 1; r++)

for(int c = col - 1; c <= col + 1; c++)
if(mat[][c])if(mat[r][c])

numThings++;

What is the order of the above code?
A. O(1) B. O(N) C. O(N2) D. O(N3) E. O(N1/2)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

23

It is Not Just Counting Loops
// S d l f i lid ld b// Second example from previous slide could be

// rewritten as follows:

int numThings = 0;int numThings = 0;

if(mat[r-1][c-1]) numThings++;

if(mat[r-1][c]) numThings++;([][]) g ;

if(mat[r-1][c+1]) numThings++;

if(mat[r][c-1]) numThings++;

if(mat[r][c]) numThings++;

if(mat[r][c+1]) numThings++;

if(mat[r+1][c-1]) numThings++;

if(mat[r+1][c]) numThings++;

if(mat[r+1][c+1]) numThings++;

CS 307 Fundamentals of
Computer Science Algorithm Analysis

24

if(mat[r+1][c+1]) numThings++;

Sidetrack, the logarithm
�Th k t D M th�Thanks to Dr. Math
�32 = 9
�likewise log3 9 = 2

– "The log to the base 3 of 9 is 2."
�The way to think about log is:

– "the log to the base x of y is the number you can
raise x to to get y."

– Say to yourself "The log is the exponent." (and say
it over and over until you believe it)it over and over until you believe it.)

– In CS we work with base 2 logs, a lot
� log 32 = ? log 8 = ? log 1024 = ? log 1000 = ?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

25

log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

When Do Logarithms Occur
�Algorithms have a logarithmic term when they useAlgorithms have a logarithmic term when they use

a divide and conquer technique
�the data set keeps getting divided by 2the data set keeps getting divided by 2
public int foo(int n)
{ // pre n > 0

int total = 0;int total 0;
while(n > 0)
{ n = n / 2;

total++;
}
return total;

}

�What is the order of the above code?
A. O(1) B. O(logN) C. O(N)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

26
D. O(Nlog N) E. O(N2)

Dealing with other methods
�Wh t d I d b t th d ll ?�What do I do about method calls?
double sum = 0.0;
for(int i = 0; i < n; i++)for(int i = 0; i < n; i++)

sum += Math.sqrt(i);

�Long wayLong way
– go to that method or constructor and count

statements
�Short way

– substitute the simplified Big O function for that p g
method.

– if Math.sqrt is constant time, O(1), simply count
M th t(i) t t t

CS 307 Fundamentals of
Computer Science Algorithm Analysis

27

sum += Math.sqrt(i); as one statement.

Dealing With Other Methods
bli i t f (i t[] li t){public int foo(int[] list){
int total = 0;
for(int i = 0; i < list.length; i++){g

total += countDups(list[i], list);
}

t t t lreturn total;
}
// method countDups is O(N) where N is thep
// length of the array it is passed

What is the Big O of foo?g
A. O(1) B. O(N) C. O(NlogN)
D O(N2) E O(N!)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

28

D. O(N2) E. O(N!)

Quantifiers on Big O
�It i ft f l t di diff t f�It is often useful to discuss different cases for

an algorithm
�Best Case: what is the best we can hope for?

– least interesting
�Average Case (a.k.a. expected running time):

what usually happens with the algorithm?y pp g
�Worst Case: what is the worst we can expect

of the algorithm?of the algorithm?
– very interesting to compare this to the average case

CS 307 Fundamentals of
Computer Science Algorithm Analysis

29

Best, Average, Worst Case
�T D t i th b t d t�To Determine the best, average, and worst

case Big O we must make assumptions
about the data setabout the data set

�Best case -> what are the properties of the data set
that will lead to the fewest number of executablethat will lead to the fewest number of executable
statements (steps in the algorithm)

�Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements

�Average case > Usually this means assuming the�Average case -> Usually this means assuming the
data is randomly distributed
– or if I ran the algorithm a large number of times with different sets of

CS 307 Fundamentals of
Computer Science Algorithm Analysis

30

data what would the average amount of work be for those runs?

Another Example
public double minimum(double[] values)
{ int n = values.length;

d bl i V l l [0]double minValue = values[0];
for(int i = 1; i < n; i++)

if(values[i] < minValue)if(values[i] < minValue)
minValue = values[i];

return minValue;
}

�T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

�If no other information, assume asking average case

CS 307 Fundamentals of
Computer Science Algorithm Analysis

31

Independent Loops
// from the Matrix class

public void scale(int factor){

for(int r = 0; r < numRows(); r++)

for(int c = 0; c < numCols(); c++)

iCells[r][c] *= factor;iCells[r][c] *= factor;

}

Assume an numRows() = N and numCols() = N.Assume an numRows() N and numCols() N.
In other words, a square Matrix.
What is the T(N)? What is the Big O?() g
A. O(1) B. O(N) C. O(NlogN)
D. O(N2) E. O(N!)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

32

() ()

Significant Improvement – Algorithm
with Smaller Big O functionwith Smaller Big O function

�P bl Gi f i t l�Problem: Given an array of ints replace any
element equal to 0 with the maximum value
t th i ht f th t l tto the right of that element.

Given:
[0, 9, 0, 8, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[9, 9, 8, 8, 7, 7, 7, 1, -1, 1, 1, 0]

CS 307 Fundamentals of
Computer Science Algorithm Analysis

33

Replace Zeros – Typical Solution
public void replace0s(int[] data){
int max;
for(int i = 0; i < data length 1; i++){for(int i = 0; i < data.length -1; i++){
if(data[i] == 0){
max = 0;
for(int j = i+1; j<data.length;j++)
max = Math.max(max, data[j]);

data[i] = max;data[i] = max;
}

}
}
Assume most values are zeros.
Example of a dependent loops

CS 307 Fundamentals of
Computer Science Algorithm Analysis

34

Example of a dependent loops.

Replace Zeros – Alternate Solution
public void replace0s(int[] data){
int max =

Math.max(0, data[data.length – 1]);(, [g]);
int start = data.length – 2;
for(int i = start; i >= 0; i--){
if(data[i] == 0)([])

data[i] = max;
else

max = Math.max(max, data[i]);(, []);
}

}
Big O of this approach?Big O of this approach?
A.O(1) B. O(N) C. O(NlogN)
D O(N2) E O(N!)
CS 307 Fundamentals of
Computer Science Algorithm Analysis

35

D. O(N2) E. O(N!)

A Caveat
��What is the Big O of this statement in Java?

int[] list = new int[n];

A. O(1) B. O(N) C. O(NlogN)
D O(N2) E O(N!)D. O(N2) E. O(N!)

�Why?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

36

Summing Executable Statements
� 2�If an algorithms execution time is N2 + N the

it is said to have O(N2) execution time not
2O(N2 + N)

�When adding algorithmic complexities the
larger value dominates

�formally a function f(N) dominates a function o a y a u c o () do a es a u c o
g(N) if there exists a constant value n0 such
that for all values N > N0 it is the case that 0
g(N) < f(N)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

37

Example of Dominance
��Look at an extreme example. Assume the

actual number as a function of the amount of
data is:

N2/10000 + 2Nlog10 N+ 10000010

�Is it plausible to say the N2 term dominates
even though it is divided by 10000 and that e e oug s d ded by 0000 a d a
the algorithm is O(N2)?

�What if we separate the equation intoWhat if we separate the equation into
(N2/10000) and (2N log10 N + 100000) and
graph the results

CS 307 Fundamentals of
Computer Science Algorithm Analysis

38

graph the results.

Summing Execution Times

red line is
2Nlog10 N + 100000

blue line isblue line is
N2/10000

�For large values of N the N2 term dominates so theFor large values of N the N term dominates so the
algorithm is O(N2)

�When does it make sense to use a computer?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

39

Comparing Grades
��Assume we have a problem
�Algorithm A solves the problem correctly and

is O(N2)
�Algorithm B solves the same problem go t so es t e sa e p ob e

correctly and is O(N log2N)
�Which algorithm is faster?Which algorithm is faster?
�One of the assumptions of Big O is that the

data set is largedata set is large.
�The "grades" should be accurate tools if this

i t
CS 307 Fundamentals of
Computer Science Algorithm Analysis

40
is true

Running Times
��Assume N = 100,000 and processor speed

is 1,000,000,000 operations per second
Function Running Time
2N 3.2 x 1030086 years
N4 3171 years
N3 11.6 days
N2 10 secondsN 10 seconds
N N 0.032 seconds
N log N 0.0017 seconds
N 0.0001 seconds

N 3.2 x 10-7 seconds
log N 1 2 x 10-8 seconds

CS 307 Fundamentals of
Computer Science Algorithm Analysis

41

log N 1.2 x 10 seconds

Theory to Practice OR
Dykstra says: "Pictures are for the Weak "Dykstra says: Pictures are for the Weak.

1000 2000 4000 8000 16000 32000 64000 128K

O(N) 2.2x10-5 2.7x10-5 5.4x10-5 4.2x10-5 6.8x10-5 1.2x10-4 2.3x10-4 5.1x10-4

O(NlogN) 8.5x10-5 1.9x10-4 3.7x10-4 4.7x10-4 1.0x10-3 2.1x10-3 4.6x10-3 1.2x10-2(g)

O(N3/2) 3.5x10-5 6.9x10-4 1.7x10-3 5.0x10-3 1.4x10-2 3.8x10-2 0.11 0.30

(55)O(N2) ind. 3.4x10-3 1.4x10-3 4.4x10-3 0.22 0.86 3.45 13.79 (55)

O(N2)
dep 1.8x10-3 7.1x10-3 2.7x10-2 0.11 0.43 1.73 6.90 (27.6)
dep.

O(N3) 3.40 27.26 (218)
(1745)
29 min.

(13,957)
233 min

(112k)
31 hrs

(896k)
10 days

(7.2m)
80 days

CS 307 Fundamentals of
Computer Science Algorithm Analysis

42
Times in Seconds. Red indicates predicated value.

Change between Data Points

1000 2000 4000 8000 16000 32000 64000 128K 256k 512k

1 21 2 02 0 78 1 62 1 76 1 89 2 24 2 11 1 62O(N) - 1.21 2.02 0.78 1.62 1.76 1.89 2.24 2.11 1.62

O(NlogN) - 2.18 1.99 1.27 2.13 2.15 2.15 2.71 1.64 2.40

O(N3/2) - 1.98 2.48 2.87 2.79 2.76 2.85 2.79 2.82 2.81

O(N2) i d - 4 06 3 98 3 94 3 99 4 00 3 99O(N2) ind - 4.06 3.98 3.94 3.99 4.00 3.99 - - -

O(N2)
dep

- 4.00 3.82 3.97 4.00 4.01 3.98 - - -
p

O(N3) - 8.03 - - - - - - - -

V l bt i d b Ti / Ti
CS 307 Fundamentals of
Computer Science Algorithm Analysis

43

Value obtained by Timex / Timex-1

Okay, Pictures
Results on a 2GhZ laptop

4.0

3.0

3.5

2.0

2.5
Ti

m
e

N
NlogN
NsqrtN
N^2

0 5

1.0

1.5 N^2

0.0

0.5

0 5000 10000 15000 20000 25000 30000 35000

V l f N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

44

Value of N

Put a Cap on Time
Results on a 2GhZ laptop

0.20

0.14

0.16

0.18

0 08

0.10

0.12

Ti
m

e

N
NlogN
NsqrtN
N^2

0.04

0.06

0.08 N^2

0.00

0.02

0 5000 10000 15000 20000 25000 30000 35000

V l f N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

45

Value of N

No O(N^2) Data
Results on a 2GhZ laptop

3.00

2 00

2.50

1.50

2.00

Ti
m

e N
NlogN
NsqrtN

0.50

1.00

0.00
0 100000 200000 300000 400000 500000 600000

Value of N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

46

Value of N

Just O(N) and O(NlogN)

Results on a 2GhZ laptop

0.05

0.06

0.03

0.04

Ti
m

e N
NlogN

0.01

0.02

0.00
0 100000 200000 300000 400000 500000 600000

Value of N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

47

Just O(N)
N

0.0020

0.0016

0.0018

0.0010

0.0012

0.0014

N

0 0004

0.0006

0.0008

0.0000

0.0002

0.0004

0 100000 200000 300000 400000 500000 600000

CS 307 Fundamentals of
Computer Science Algorithm Analysis

48

0 100000 200000 300000 400000 500000 600000

Reasoning about algorithms
�W h O(N) l i h�We have an O(N) algorithm,

– For 5,000 elements takes 3.2 seconds
For 10 000 elements takes 6 4 seconds– For 10,000 elements takes 6.4 seconds

– For 15,000 elements takes ….?
– For 20 000 elements takes ?For 20,000 elements takes ….?

�We have an O(N2) algorithmWe have an O(N) algorithm
– For 5,000 elements takes 2.4 seconds
– For 10,000 elements takes 9.6 seconds
– For 15,000 elements takes …?
– For 20,000 elements takes …?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

49

A Useful Proportion
��Since F(N) is characterizes the running time

of an algorithm the following proportion
should hold true:

F(N0) / F(N1) ~= time0 / time10 1 0 1

�An algorithm that is O(N2) takes 3 seconds
to run given 10,000 pieces of data. o u g e 0,000 p eces o da a
– How long do you expect it to take when there are

30,000 pieces of data?, p
– common mistake
– logarithms?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

50

logarithms?

109 instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N2)

10 0.000000003 0.00000001 0.000000033 0.0000001

100 0.000000007 0.00000010 0.000000664 0.0001000

1,000 0.000000010 0.00000100 0.000010000 0.001

10,000 0.000000013 0.00001000 0.000132900 0.1 min

100,000 0.000000017 0.00010000 0.001661000 10 seconds

1,000,000 0.000000020 0.001 0.0199 16.7 minutes

1,000,000,000 0.000000030 1.0 second 30 seconds 31.7 years

CS 307 Fundamentals of
Computer Science Algorithm Analysis

51

Why Use Big O?
�A b ild d t t t Bi O i th t l ill�As we build data structures Big O is the tool we will

use to decide under what conditions one data
structure is better than anothers uc u e s be e a a o e

�Think about performance when there is a lot of
data.
– "It worked so well with small data sets..."
– Joel Spolsky, Schlemiel the painter's Algorithm

�Lots of trade offs�Lots of trade offs
– some data structures good for certain types of problems,

bad for other types
– often able to trade SPACE for TIME.
– Faster solution that uses more space

Slower solution that uses less space
CS 307 Fundamentals of
Computer Science Algorithm Analysis

52

– Slower solution that uses less space

Big O Space
��Less frequent in early analysis, but just as

important are the space requirements.
�Big O could be used to specify how much

space is needed for a particular algorithm

CS 307 Fundamentals of
Computer Science Algorithm Analysis

53

Formal Definition of Big O (repeated)
��T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)
when N > N0
– N is the size of the data set the algorithm works on
– T(N) is a function that characterizes the actual

running time of the algorithm
– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithmthe algorithm

– c and N0 are constants

CS 307 Fundamentals of
Computer Science Algorithm Analysis

54

More on the Formal Definition
�Th i i N h h f ll l f N h�There is a point N0 such that for all values of N that

are past this point, T(N) is bounded by some
multiple of F(N)multiple of F(N)

�Thus if T(N) of the algorithm is O(N^2) then,
ignoring constants at some point we can bound theignoring constants, at some point we can bound the
running time by a quadratic function.

�given a linear algorithm it is technically correct togiven a linear algorithm it is technically correct to
say the running time is O(N ^ 2). O(N) is a more
precise answer as to the Big O of the linear
algorithm
– thus the caveat “pick the most restrictive function” in Big

O t ti
CS 307 Fundamentals of
Computer Science Algorithm Analysis

55

O type questions.

What it All Means
��T(N) is the actual growth rate of the

algorithm
– can be equated to the number of executable

statements in a program or chunk of code
�F(N) is the function that bounds the growth

rate
– may be upper or lower bound

�T(N) may not necessarily equal F(N)() y y q ()
– constants and lesser terms ignored because it is

a bounding function

CS 307 Fundamentals of
Computer Science Algorithm Analysis

56

g

Other Algorithmic Analysis Tools
��Big Omega T(N) is �(F(N)) if there are

positive constants c and N0 such that
T(N) > cF(N)) when N > N0
– Big O is similar to less than or equal, an upper

bounds
– Big Omega is similar to greater than or equal, a

l b dlower bound
�Big Theta T(N) is �(F(N)) if and only if T(N)

is O(F(N))and T(N) is �(F(N)).
– Big Theta is similar to equals

CS 307 Fundamentals of
Computer Science Algorithm Analysis

57

Relative Rates of Growth
Analysis Mathematical RelativeAnalysis

Type
Mathematical
Expression

Relative
Rates of
Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big � T(N) = �(F(N)) T(N) > F(N)

Big � T(N) = �(F(N)) T(N) = F(N)

"In spite of the additional precision offered by Big Theta,
Big O is more commonly used except by researchers

CS 307 Fundamentals of
Computer Science Algorithm Analysis

58

Big O is more commonly used, except by researchers
in the algorithms analysis field" - Mark Weiss

