 Points off 1 2 3 4 Admin
 Total off Net Score

	
	
	
	
	
	
	

CS 307 – Final Exam– Spring 2003

Name____________________________________

Last 4 digits of SSN / Student ID ______________

Section Leaders Name ___________________________

Instructions:

1. There are 4 questions on this test. Question 1 is worth 40 points; all others are worth 20 points each.

2. You have 3 hours to complete the test.

3. You may not use a calculator.

4. When code is required, write Java code.

5. You may not use any classes or methods from the Java Standard Library other than the ones specifically mentioned on each question. You may native / built in arrays on any and all questions if you wish.

6. The style guide is not in effect except where noted

7. Please make your answers legible.

1. Short answer questions. (2 points each) Write the answer to each question in the space provided. If code results in an error indicate if it is a compile error or runtime error.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is technically correct to say Selection Sort also has a Big O of O(N^3). On this test I want the most precise Big O function. (Closest without going under.)

A.
The following numbers are inserted in the order shown into a binary search tree with no checks to ensure or maintain balance. The tree is initially empty. Draw the resulting tree.

101 -12 59 37 91 201

For parts B, C, and D consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

B.
What is the output of a preorder traversal of the tree?

__

C.
What is the output of an inorder traversal of the tree?

__

D.
What is the output of a postorder traversal of the tree?

__

E.
Is the tree on page 2 a binary search tree?

For questions F and G consider the following Queue class

public class Queue

{
// create an empty queue

public Queue()

// add this element to the back of the queue

public void enqueue(int x)

// access the front element of the queue

public int front()

// remove front element of queue

public void dequeue()

// returns number of items in queue

public int size()

}
F.
What is the output of the following code:

Queue q = new Queue();

q.enqueue(12);

q.enqueue(13);

q.enqueue(q.front());

q.enqueue(q.front());

q.dequeue();

q.enqueue(25);

for(int i = 0; i < 3; i++)

{
System.out.print(q.front() + " ");

q.dequeue();

}

G.
What is the output of the following code:

Queue q = new Queue();

q.enqueue(3);

for(int i = 1; i < 17; i *= 2)

q.enqueue(i);

int limit = q.size();

for(int i = 0; i < limit; i++)

{
System.out.print(q.front() + " ");

q.dequeue();

}

​​​​​​________________________

H.
Consider a Doubly Linked List that stores data in sorted order. The Linked List only maintains links to the first and last node in the list. What is the average case Big O of determining if a given value is present in the Linked List assuming the most efficient search method is used?

__

I.
Consider an ArrayList that stores data in sorted order. What is the average case Big O of determining if a given value is present in the ArrayList assuming the most efficient search method is used?

__

J.
Consider the graph Abstract Data Type. A graph is made up of nodes and links that connect nodes. One possible internal storage container for the graph ADT is an adjacency matrix. This is a 2D array with the number of rows equal to the number of nodes in the graph and the number of columns also equal to the number of nodes. How many elements are in the matrix given a graph with N nodes?

K.
Consider the graph Abstract Data Type with an adjacency matrix, 2D array of booleans, as the internal storage container. If there are N nodes in the graph what is the Big O of adding a node to the graph ADT when using an adjacency matrix as the internal storage container.

L.
What is the Big O of the following code:

public int rogue(int n)

{
if(n <= 0)

return 1;

else return rogue(n/2) + rogue(n/2);

}

For questions M and N consider the following Stack class

public class Stack

{
// create an empty stack

public Stack()

// add this element to the top of the stack

public void push(int x)

// access the top element of the stack

public int top()

// remove top element of stack

public void pop()

// returns number of items in stack

public int size()

}
M.
What is the output of the following code:

public void colossus(int n)

{
Stack s = new Stack();

for(int i = n; i >= 0; i -= 3)

s.push(i);

for(int i = 0; i < 4; i++)

{
System.out.print(s.top() + " ");

s.pop();

}

}

// in some other method

colossus(20);

N.
What is the Big O of method colossus in part M? All methods in the stack class are O(1).

O.
Consider the following ListNode class:

public class ListNode
{
public Object data;

public ListNode next;

public ListNode prev;

}
Draw the object variables and objects that exists after the following code is executed. Use arrows to show what is stored in pointers. Use a "/" to indicate any object references that are null.

ListNode N1 = new ListNode();

ListNode N2 = new ListNode();

N1.prev = N2;

N1.prev.prev = N1;

ListNode N3 = N2;

N2.prev.next = N2;

P.
What is the average case Big O for a postorder traversal of a binary tree? What does the N in the Big O function represent?

__

Q.
What is the worst case Big O for inserting a single item into a Red Black Tree?
__

R.
Consider a Doubly Linked List class. The Linked List only maintains pointers to the first and last nodes in the list. Items are stored in the List in sorted order. What is the average case Big O for adding N items to this Doubly Linked List that is initially empty?

 __

S.
The code for a character is a series of 1's and 0's. To generate the code for a character start at the root and follow the unique path from the root to that character. The code starts out empty. When following a left link concatenate a 0 to the code and when following a right link concatenate a 1 to the code. Consider the following Huffman Code tree.

What is the code for the character d?

__

T.
Consider a Set ADT. A set has no implied order, and elements can only appear once. In other words there cannot be multiple copies of an item in the Set. Assume this Set class does not allow nulls to be stored as values. Assume a Set uses a HashTable as its internal storage container. The HashTable uses chaining with a Red Black Tree to resolve collisions. What is the average case Big O for adding an element to the set?

__

2.
(Trees) Write a method to determine if two binary trees are mirror images of each other. The mirror image property is based on the structure of the two trees, not the contents of nodes. Two binary trees are mirror images if one of the trees structure's is the reverse of the other. A trivial case is two trees with the exact same structure. Some other examples.

These two trees are mirror images of each other

So are these

These two trees are not mirror images of each other:

You may use the following class for this question

public class BTNode

{
public BTNode() // left and right children null

public BTNode(BTNode left, BTNode right)

public BTNode getLeft()

public BTNode getRight()

public void setLeft(BTNode left)

public void setRight(BTNode right)

}

Complete the following method. Your implementation must operate in no worse than O(N) time where N is the number of nodes in the largest of the two trees. You may create helper methods if you wish. You must include comments explaining your algorithm in your method.

Hint: If t1 and t2 are both null, then they are the roots of two binary trees that are mirror images of each other. If one is null and the other is not, they are not mirror images of each other. If they are both not null there is still more work to do.

/* pre: none
 post: returns true if t1 and t2 are the roots of two binary trees that are mirror images of each other, false otherwise

*/

public boolean areMirrorImages(BTNode t1, BTNode t2)

Intentionally Blank

 3. (Implementing Data Structures) A priority queue is a queue in which every element that is added has a priority. Items are added to the back of the queue but when an item is added it is placed in front of every element in the queue that has a lower priority. Consider the following example (This example only shows the priorities, not the actual Objects being stored):

front of priority queue

back of priority queue

|

|

1
2(a)
2(b)
5
7(a)
7(b)
8
11
13

Now an item with a priority of 7 is added to the queue. The resulting queue would be:

front of priority queue

back of priority queue

|

|

1
2(a)
2(b)
5
7(a)
7(b)
7(c)
8
11
13

7(c) is the item that has just been added to the queue.

The priority queue uses a native array of PriPair objects as its internal storage container.

public class PriorityQueue
{
private PriPair[] myCon;

private int iMySize;

// pre: none

// post: myCon.length = old myCon.length * factor

// old elements from old myCon copied to corresponding

// position in new myCon

private void resizeMyCon(int factor)

}

You are to implement the enqueue method for the PriorityQueue class. Your method shall be no worse than average case O(N). The priority queue stores data in PriPair Objects in order to group the data and its priority together. You will use the following class.

public class PriPair
{
public int pri;

public Object data;

// pre: none

// post: Object created containing data and pri

public PriPair(Object data, int pri)

}

/* pre: none

 post: item added at appropriate spot based on pri. Your method

shall be no worse than average case O(N). You may

use the resizeMyCon method in the PriorityQueue class as described on the previous page.

*/
public void enqueue(Object item, int pri)
{
// complete the method below

4. (Using data structures) A graph is a data structure similar to a tree that is made up of nodes and links between nodes. The links may either be directed, indicating an allowed direction of travel between two nodes or undirected, indicating you can freely move back and forth between two nodes that have a link between them.

Simple directed graph with 2 nodes
and 1 link. Can only move from C to D.

This problem concerns directed graphs. A cycle in a graph is a path (series of links) in graph which starts and ends at the same node and includes other nodes at most once. In other words you start at a node and follow a series of links and eventually you end up back where you started. You will write a method to determine if a given node is part of a cycle.

You will use the following class

public class Graph
{
// returns number of nodes in Graph. 0 Indicates no nodes.

public int numNodes()

/* pre: 0 < node1 <= numNodes(), 0 < node2 <= numNodes

post: return true if travel from nodefrom to nodeTo is permitted. In other words returns true if there is an edge from nodeFrom to nodeTo, false otherwise.

*/

public boolean linkExists(int nodeFrom, int nodeTo)

}

You may also use the Integer class, but only the following methods:

Integer(int value)
 Constructs a newly allocated Integer object that represents the specified int value.

	 int
	intValue()
 Returns the value of this Integer as an int.

You may, if you wish use a standard Queue class:

// this is a standard queue

public class Queue

{
// create an empty queue

public Queue()

// get num items in queue

public int size()

// access the front item

// pre: size() > 0

public Object front()

// remove and return the front item

// pre: size() > 0

public Object dequeue()

// add int to back of queue

public void enqueue(Object item)

}

Complete the following method. You must include comments explaining your algorithm in your method.
/* pre: g != null, g is an directed graph, 0 < nodeNum <=

g.numNodes

 post: returns true if the node in g specified by nodeNum is

part of a cycle, false otherwise

*/

public boolean isPartOfCycle(Graph g, int nodeNum)

{
Examples of graph with no cycles

Example of graph with cycle. Nodes a, b, and c

are all part of a cycle, while nodes d and e are

not part of a cycle.

/* pre: g != null, g is an directed graph, 0 < nodeNum <=

g.numNodes

 post: returns true if the node in g specified by nodeNum is

part of a cycle, false otherwise

*/

public boolean isPartOfCycle(Graph g, int nodeNum)

{
// You must include comments explaining your algorithm in

// your method.

 5

17

 61

19

11

113

D

131

7

C

root of tree

e

d

c

b

a

 151

u

d

f

t

e

CS 307 – Final Exam – Spring 2003
 13

