
 CS 307 – Midterm 2 – Spring 2009 1

Exam Number:
Points off 1 2 3 4 5 Total off Net Score

CS 307 – Midterm 2 – Spring 2009

Name__

UTEID login name _______________________________

TA's Name: Guhan Todd Xiuming (Circle One)

Instructions:

1. Please turn off your cell phones and other electronic devices.
2. There are 5 questions on this test.
3. You have 2 hours to complete the test.
4. You may not use a calculator on the test.
5. When code is required, write Java code.
6. When writing methods, assume the preconditions of the method are met. Do not write code to check

the preconditions.
7. In coding question you may add helper methods if you wish.
8. After completing the test please turn it in to one of the test proctors and show them your UTID.

1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.

• If the code contains a syntax error or other compile error, answer “compile error”.
• If the code would result in a runtime error / exception answer “Runtime error”.
• If the code results in an infinite loop answer “Infinite loop”.

Recall that when asked for Big O your answer should be the most restrictive correct Big O function. For
example Selection Sort has an average case Big O of O(N2), but per the formal definition of Big O it is
correct to say Selection Sort also has a Big O of O(N3) or O(N4). I want the most restrictive correct Big O
function. (Closest without going under.)

A. What is the Big O of the following method? N = mat.length

// pre: mat != null, mat is a square matrix
public double methodA(double[][] mat){
 int total = 0;
 for(int c = mat.length - 1; c >= 0; c--)
 for(int r = c; r >= 0; r--)
 total += mat[r][c];
 return total;
}

 CS 307 – Midterm 2 – Spring 2009 2

B. What is the worst case Big O of the following method? N = data.length

public int methodB(int[] data){
 int count = 0;
 for(int i = 0; i < data.length; i++){
 if(data[i] % 2 == 0)
 count++;
 }
 for(int i = 1; i < data.length; i++){
 if(data[i] % 10 == 0)
 count++;
 }
 return count;
}

C. What is the worst case Big O of the following method? N = data.length. The length method

from the String class is O(1).

public int methodC(String[] data){
 int sum = 0;
 for(int i = 0; i * i < data.length; i++){
 int temp = i * i;
 if(data[temp] != null)
 sum += data[temp].length();
 }
 return sum;
}

D. What is the worst case Big O of the following method? N = data.length.

public boolean methodD(int[] data, int tgt){
 int temp;
 boolean found = false;
 int index = 0;
 int limit = data.length - 4;
 while(index < limit && !found){
 temp = 0;
 for(int off = 0; off < 5; off++)
 temp += data[index + off];
 found = temp == tgt;
 index++;
 }
 return found;
}

E. A method is O(2N). It takes 5 seconds for the method to complete when given a data set with 100

elements. What is the expected time for the method to complete when given a data set with 104
elements?

F. A method is O(N2). It takes 1second for the method to complete when given a data set with 10,000

elements. What is the expected time for the method to complete when given a data set with 30,000
elements?

 CS 307 – Midterm 2 – Spring 2009 3

G. What is returned by the method call methodG(7)?

public int methodG(int n){
 if(n >= 10)
 return 3;
 else
 return (10 - n) + methodG(n + 1);
}

H. What is output by the method call methodH("UTCS")? The substring(int) method

returns a substring that begins with the character at the specified index and extends to the
end of the string.

public void methodH(String s){
 if(s.length() == 1)
 System.out.print(s);
 else{
 System.out.print(s.charAt(0));
 methodH(s.substring(1));
 System.out.print(s.charAt(s.length() - 1));
 }
}

I. What is returned by the method call methodI(4)?

public int methodI(int n){
 if(n <= 0)
 return 2;
 else
 return n + methodI(n - 1) + methodI(n - 3);
}

J. What is the Big O of removing the element at position 0 from an array based list that already
 contains N elements?

K. What is the Big O of removing the element at position 0 from a linked list that already
 contains N elements?

L. The best case Big O of the insertion sort algorithm is O(N). Under what conditions does this best

case occur?

M. Given a sorted array of 4000 elements, about how many elements will the binary search algorithm

examine when searching for a value that is not present in the array? Given your answer as an integer.
Recall log21,000 ~= 10.

 CS 307 – Midterm 2 – Spring 2009 4

N. Briefly explain what operation on a linked list can be made more efficient by having an
iterator for the linked list.

O. Consider the following methods from the Java ArrayList class.

Method Summary

 void add(E o)
 Appends the specified element to the end of this list.

 void add(int index, E element)
 Inserts the specified element at the specified position in this list.

 E get(int index)
 Returns the element at the specified position in this list.

E remove(int index)
 Removes the element at the specified position in this list. Return the element that is
removed from the list.

 E set(int index, E element)
 Replaces the element at the specified position in this list with the specified element.
Returns the element that was previously at index.

 int size()
 Returns the number of elements in this list.

What is output when method methodO is called?

public void methodO(){
 ArrayList<String> ls = new ArrayList<String>();

 ls.add("M");
 ls.add(0, "K");
 ls.add("O");
 ls.add(1, "I");
 ls.add(ls.get(2));
 ls.set(2, "GG");

 for(String s : ls)
 System.out.print(s);
}

 CS 307 – Midterm 2 – Spring 2009 5

2. (Implementing Data Structures 20 points) In this question you will work with a type of list called a
FrequencyList. The FrequencyList is very similar to the List class but it also tracks how often
items are accessed via the get method. Every time an element of the list is accessed its frequency is
incremented. You will write a method to consolidate the FrequencyList.

Here is an abstract view of the FrequencyList.

position in list

0 1 2 3 4 5

data

"cat" "dog" "cat" "dog" "duck" "cat"

access frequency

2 12 18 10 18 1

Notice some values appear multiple times in the FrequencyList. The consolidate method
removes all duplicates from the FrequencyList and adds the frequency of these duplicate elements to
the first occurrence of that element. Elements after the duplicate are shifted forward in the list. After a call to
consolidate the FrequencyList shown above would become the following:

position in list

0 1 2

data

"cat" "dog" "duck"

access frequency

21 22 18

The FrequencyList uses an array of Pair objects much like the array based list example we did in
class. Each Pair object holds one Object, which is the actual element in the list and an int, which is
the number of times that element has been accessed.

Just like out array based list examples in class the array of Pair objects in the FrequencyList class
may have extra capacity.

Here are the FrequencyList and Pair classes.

public class FrequencyList{

 private Pair[] con;
 private int size;

 public void consolidate() // to be completed by students
 // other methods not shown.
}

public class Pair{
 public Pair(Object obj) // create new Pair with frequency 0

 public Object getData()
 public int getFreq()

 public void increaseFreq(int n) // increase freq by n, n >= 0
}

 CS 307 – Midterm 2 – Spring 2009 6

Here is a more concrete view of the original FrequencyList shown above.

And this is what it would be after a call to consolidate:

Complete the method consolidate which is a method in the FrequencyList class.

• You may not use any other methods in the FrequencyList class unless you write them
yourself.

• You can use the equals methods from the elements of the FrequencyList.
• You cannot use any of the Java Collection classes such as ArrayList or

LinkedList. (Native arrays are not a Java Collection class.)

"dog"
12

"cat"
2

"cat"
 18

"dog"
10

"duck"
18

"cat"
1

con
size 6

0 1 2 3 4 5 6 7

"dog"
22

"cat"
21

"duck"
 18

con
size 3

0 1 2 3 4 5 6 7

 CS 307 – Midterm 2 – Spring 2009 7

// recall this method is part of the FrequencyList class
// pre: none
// post: this FrequencyList has been updated as described in the
// question.
public void consolidate(){

 CS 307 – Midterm 2 – Spring 2009 8

3. (Implementing data structures, 20 points). Write an instance method for a LinkedList class
named swap. This method swaps two elements in the linked list with each other.

• This LinkedList class uses singly linked nodes.
• Each node stores a single Object and a link to the next node.
• This LinkedList class only contains a reference to the first node in the list.
• The last node in the list's next reference is set to null.
• When the list is empty head is set to null.
• The list uses 0 based indexing.

Examples of the affect of the swap method on lists:
[A, C, D, A, B].swap(1, 3) changes the list to [A, A, D, C, B]
[A, C, D, A, B].swap(0, 4) changes the list to [B, C, D, A, A]
[A, C, D, A, B].swap(1, 1) is a valid call, but does not alter the list.

• You may not use any other methods in the LinkedList class, but you may create
your own helper methods if you wish.

• Your solution must be O(1) space. In other words you cannot use an auxiliary array or
ArrayList. Your method should be O(N) time.

• Hint: Do not actually change the position of any nodes in the list. Instead swap the data
in the affected nodes.

public class Node {
 public Node(Object value, Node next)

 public Object getData()
 public Node getNext()

 public void setValue(Object value)
 public void setNext(Node next)
}

public class LinkedList {
 // points to the first node in the list
 // if the list is empty, head == null
 private Node head;
 private int size;

 // pre: 0 <= pos1 < size(), 0 <= pos2 < size, pos1 <= pos2
 // post: The data at positions pos1 and pos2 have been
 // swapped.
 public void swap(int pos1, int pos2){

 CS 307 – Midterm 2 – Spring 2009 9

// pre: 0 <= pos1 < size(), 0 <= pos2 < size, pos1 <= pos2
// post: The data at positions pos1 and pos2 have been swapped.
public void swap(int pos1, int pos2){
 assert pos1 >= 0 && pos1 < size && pos2 >= 0 && pos2 < size
 && pos1 <= pos2 : "Failed precondition.";

 CS 307 – Midterm 2 – Spring 2009 10

4. (Using data structures, 15 points) Write a method that returns the kth element from a
SortedSet. The kth value in a SortedSet is the kth smallest value in the SortedSet. (See
examples below.) The iterator for the SortedSet iterates through the elements of the
SortedSet in ascending order. This method is not in the SortedSet class so you do not
have access to the SortedSet's storage container or other instance variables.

• Assume the SortedSet class is generic based on Java's generic syntax.
• The SortedSet is not altered as a result of this method.
• Your method must be O(1) space. In other words you cannot use an auxiliary array or

ArrayList.

Implement the following method:

Examples of method calls. Assume values are Integer objects, not primitive ints.

(1, 5, 10, 12, 50, 100).getKth(1) -> returns 1
(1, 5, 10, 12, 50, 100).getKth(2) -> returns 5
(1, 5, 10, 12, 50, 100).getKth(4) -> returns 12
(1, 5, 10, 12, 50, 100).getKth(6) -> returns 100
(1, 5, 10, 12, 50, 100).getKth(-2) -> returns null
(1, 5, 10, 12, 50, 100).getKth(10) -> returns null

Here are the methods from the SortedSet class you may use:

Iterator<E> iterator()
 Returns an iterator over the elements in this set in ascending order.
boolean contains(Object o)
 Returns true if this set contains the specified element.
int size()
 Returns the number of elements in this set (its cardinality).

Recall the methods from the Iterator interface:

boolean hasNext()
 Returns true if the iteration has more elements.
E next()
 Returns the next element in the iteration.
void remove()
 Removes from the underlying collection the last element returned by the iterator

Complete the following method on the next page:

// pre: none
// post: return the kth element of theSet. theSet is not
// changed as a result of this method call. If k is not
// a valid value return null.
public int getKth(int k){

 CS 307 – Midterm 2 – Spring 2009 11

// pre: none
// post: return the kth element of theSet. theSet is not
// changed as a result of this method call. If k is not
// a valid value return null.
public int getKth(int k){

 CS 307 – Midterm 2 – Spring 2009 12

5. (Recursion, 15 points) Write a method to determine how many ways a competitor may earn
honorable mention in a chess tournament.

• The tournament consists of a number of rounds.
• A player plays every round.
• The possible results for a round are win, draw, and lose.
• A win is worth 5 points, a draw is worth 3 points, and a loss is worth 1 point.
• The number of points required for honorable mention will vary per tournament.

So for example, if a tournament consists of 3 rounds and 12 points are required to get honorable
mention, there are 4 ways (out of a possible 27 in this example) to achieve the required 12 points.

Round 1
Result

Round 2
Result

Round 3
Result

Total Points

Win Win Win 15 (5 + 5 + 5)
Win Win Draw 13 (5 + 5 + 3)
Win Draw Win 13 (5 + 5 + 3)
Draw Win Win 13 (5 + 5 + 3)

Complete the following method. You may add helper methods if you wish. You may assume the
initial values for numRounds and pointsRequired will be greater than 0.

// Return the number of ways required to achieve the number of
// points to get honorable mention in a chess tournament with
// the given number of rounds and the minimum required number
// of points.
public int waysToEarnHonrableMention(int numRounds,
 int pointsRequired){

// More room on next page

 CS 307 – Midterm 2 – Spring 2009 13

 CS 307 – Midterm 2 – Spring 2009 14

 CS 307 – Midterm 2 – Spring 2009 15

Name:_______________________________

TAs name: Guhan Todd Xiuming (Circle One)

Answer sheet for question 1, short answer questions

A. _______________________________

B. _______________________________

C. _______________________________

D. _______________________________

E. _______________________________

F. _______________________________

G. _______________________________

H. _______________________________

I. _______________________________

J. _______________________________

K. _______________________________

L. _______________________________

M. _______________________________

N. _______________________________

O. _______________________________

