 Points off 1 2 3 4 5 6 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Midterm 2 – Spring 2003

Name____________________________________

Last 4 digits of SSN / Student ID ______________

Section Leader's Name ___________________________

Instructions:

1. There are 4 questions on this test.

2. You have 2 hours to complete the test.

3. You may not use a calculator on the test.

4. When code is required, write Java code.

5. The style guide is not in effect except where noted.

6. Efficiency is not graded except where noted.

7. Ensure your answers are legible.

8. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, and the equals method.

1. (2 points each, 30 points total) Short answer. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it would be.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is technically correct to say Selection Sort also has a Big O of O(N^3). On this test I want the most precise Big O function. (Closest without going under.)

A.
A method has a Big O of (N^2). It takes 20 seconds for this method to complete when working with a data set of 2000 elements. (N = 2000). What is the predicted time for the method to complete when the data set has 4000 elements?

B.
A method has a Big O of (N^3). It takes 15 seconds for this method to complete when working with a data set of 1000 elements. (N = 1000). What is the predicted time for the method to complete when the data set has 4000 elements?

C.
A programmer claims to have developed a sort that is sub-quadratic. (Performs in a Big O of less than O(N^2). If the average case Big O for an algorithm is O(N^1.25), then the algorithm's Big O is less than O(N^2) and it is a sub-quadratic algorithm.) It takes 5 seconds to sort a data set of 1000 items, 15 seconds to sort a data set of 2000 items, and 45 seconds to sort a data set of 4000 items. Does the data support the programmer's claim? Why or why not?

D.
What is the average case Big O for replacing an item in a List when the internal storage container is an array of Objects?

/* pre: 0 <= location < getSize()
 post: get(location) == el

*/
public void replace(Object el, int location)

E.
What is the average case Big O for replacing (same method as part D.) an item in a List when the internal storage container is a linked list?

F.
What is the Big O of the following code?

for(int i = N; i >= 0; i--)

for(int j = 0; j < N; j++)

System.out.println(j + i);

G.
What is the Big O of the following code? Method dogbert has a Big O of O(N) where N is the magnitude of the argument sent to the method.

for(int i = 0; i < N; i++)

for(int j = 0; j < i; j++)

dogbert(i);

H.
What is the Big O of the following code?

int total = 0;

for(int i = 0; i < N; i++)

for(int j = 0; j < 5; j++)

for(int k = 0; k < N; k++)

for(int m = 1; m <= N; m = m * 2)

total++;

I.
Consider the following method

public void dilbert(String pointy)

{
if(pointy.length() > 1)

{
System.out.print(pointy.charAt(1));

dilbert(pointy.substring(2));

System.out.print(pointy.charAt(0));

}

}
What is output by the following line of code?

dilbert("Catbert");

Description of methods from String class

	char
	charAt(int index)
 Returns the character at the specified index. An index ranges from 0 to length() - 1. The first character of the sequence is at index 0, the next at index 1, and so on, as for array indexing.

	
String
	substring(int beginIndex)
 Returns a new string that is a substring of this string. The substring begins with the character at the specified index and extends to the end of this string.

J.
Consider the following method:

public int philPrinceOfInsufficientLight(int num)

{
if(num <= 0)

return num * 2 + 2;

else

return philPrinceOfInsufficientLight(num - 1)

+ philPrinceOfInsufficientLight(num - 2) + 3;

}

what is output by the line of code

System.out.println(philPrinceOfInsufficientLight(6));

K.
This question is about the ShellSort algorithm. Given the following array:

23 17 19 5 3 2 101 97 43 88 155 105 42 16

and a gap size of 4 what would the array be after completing the portion of the ShellSort with a gap of 4? Note, the array will not be completely sorted after this portion of the ShellSort.

(The first sub array is 23, 3, 43, 42)

L.
Assume a list of integers is unsorted. You want to find if a particular integer is present in the list. For this single operation what would be the average case Big O for finding if the given integer is present if the list is to remain unsorted?

M.
Assume a list of integers is initially unsorted. You want to find if a particular integer is present in the list. For this single operation what would be the average case Big O for finding if the given integer is present if the list must first be sorted and then checked to see if the given integer is present? State which sorting algorithm is being used to sort the list.

N.
Explain the purpose of the Comparable interface and the compareTo method.

O.
Explain what the term genericty of data structures means. How does Java achieves genericity of data structures.

2. (Manipulating Lists, 20 points) Complete a method that reverses a List. This method is not part of the List class. Your method shall have a Big O no worse than O(N)

If the list consisted of the elements [1,2,3,4,5,6] then after this method the list would consist of the elements [6,5,4,3,2,1].
You may use the following methods from the List class (but no others):

	void
	add(int index, Object element)
 pre: 0 <= index <= getSize()

 post: Inserts the specified element at the specified position in this list. O(N)

	 void
	add(Object o)
 Appends the specified element to the end of this list (optional operation). O(1)

	Object
	get(int index)
 Returns the element at the specified position in this list. O(1)

	int
	getSize()
 Returns the number of elements in this list. O(1)

	Object
	set(int index, Object element)
 pre: 0- <= index < getSize
 post: Replaces the element at the specified position in this list with the specified

 element. O(1)

/*
pre: a != null

post: elements in a have been reversed.

*/

public void reverse(List a)
3. (ADTS, 20 points) Consider a Set ADT. A set has no implied order, and elements can only appear once. In other words there cannot be multiple copies of an item in the Set. Assume this Set class does not allow nulls to be stored as values.

public class Set

{
private int iMySize;

private Object[] myCon

// elements of the Set are stored in the first iMySize

// elements of myCon.

private static final int DEFAULT_SIZE = 10;

public Set()

{
iMySize = 0;

myCon = new Object[DEFAULT_SIZE];

}

}
complete the following method which is part of the Set class.

/* pre: otherSet != null

post: returns the union of this Set and other Set (A Set

 containing all items in this Set and otherSet). This is an

 accessor so it does not alter the members of the calling

 object or the otherSet parameter. You may only use the Set

 class default constructor and the equals method. This method

 shall return a union consisting of shallow copies. The new

 set can simply point to the Objects from the other sets. You

 do not have to create new copies of the members of the

 original sets.

*/

public Set union(Set otherSet)

{
Example: The union of {1, 5, 3, 7} and {6, 1, 7, 5, 12}

 is {1, 3, 5, 7, 12, 6}
Complete your union method on the following page.

public Set union(Set otherSet)

{ // this method is part of the Set class. You may only use the

 // Set class default constructor and the equals method.

4. (Recursion, 30 points) This question involves slot machines. A slot machine is a gambling device with various wheels or reels. Each reel has various symbols on it. After pulling the handle, the reels spin and eventually stop, each showing a symbol. The symbol that is displayed is determined randomly. The payout for the machine is based on the line of symbols displayed after the reels come to a stop. The diagram below is from www.howstuffworks.com.

[image: image1.jpg]disc
handle
(clic here)
stoppers
(click here)
cam

Kickers

ok sth

In the diagram above the payout line consists of these three symbols from right to left:

circle with line, alien head, martini glass

You will write a method that determines the average payout for a given slot machine.

If each combination of symbols has a uniform probability of occurring then the average payout is equal to:

(sum of all possible payouts) / (number of possible payout lines.)

To calculate the sum of all payouts you must determine all permutations of symbols on the reels and add together the payout for each of these payout lines. You will use the following SlotMachine and Symbol classes in your answer.

public class SlotMachine

{
/*
pre: none

post: returns number of reels this machine has.

Always returns a value > 0

*/

public int getNumReels()

/*
pre: none

post: returns number of symbols per wheel.

Always returns a value > 0

All of a SlotMachine's reels have the same number of

symbols

*/

public int getSymbolsPerReel()
/*
pre: 0 < reel <= getNumReels(),

0 < sym <= getSymbolsPerReel()

post: returns Symbol from specified location

*/

public Symbol getSymbol(int reel, int sym)

}

public class Symbol

{
/*
pre: none

post: returns amount this Symbol adds to payout

*/

public double addsToPayout()

/*
pre: none

post: returns amount this Symbol multiplies

payout line by.

*/

public double multipliesPayoutBy()

}

To calculate the payout for a given payout line you sum the amounts each individual symbol adds to the payout and then multiply that sum by each individual symbols multiplier.

Here is an example.

Assume a slot machine has 2 reels, with 2 symbols per reel.

Assume each reel has one 'A' symbol and one 'B' symbol.

There are four possible payout lines.

The 'A' symbol has an addsToPayout() of 0, and a multipliesPayoutBy() of 0

The 'B' symbol has an addsToPayout() of 0.4 and a multipliesPayoutBy() of 2

The possible payout lines and calculation of payout for that line are:

AA
(0 + 0) * 0 * 0 = 0

AB
(0 + 0.4) * 0 * 2 = 0

BA
(0.4 + 0) * 2 * 0 = 0

BB
(0.4 + 0.4) * 2 * 2 = 3.2
The sum of all possible payouts is 0 + 0 + 0 + 3.2 = 3.2. The average payout is the sum of all possible payouts divided by the number of possible payout lines. 3.2 / 4 = 0.8.

Complete the following method. getAveragePayout is in a class other than SlotMachine and Symbol. You may use the Math.pow method.

public static double pow(double a,double b)

Returns of value of the first argument raised to the power of the second argument. If b = 0, returns 1

Parameters:

a - the base.

b - the exponent.

Returns:

the value ab.

/*
pre: s != null

post: returns average payout for s

*/

public double getAveragePayout(SlotMachine s)

/*
more space on next page clearly state and explain your base case(s) and recursive step(s) with comments

*/

CS 307 – Midterm 2 – Spring 2003
 10

