
 1

CS312 Fall 2018 Exam 2 Solution and Grading Criteria.
Grading acronyms:

AIOBE - Array Index out of Bounds Exception may occur

BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise

Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)

LE - Logic error in code.

NAP - No answer provided. No answer given on test

NN - Not necessary. Code is unneeded. Generally no points off

NPE - Null Pointer Exception may occur

OBOE - Off by one error. Calculation is off by one.

RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Code Trace:

A. 7

B. false

C. yball

D TeXaS 5 (TEXAS 5 is wrong, substring returns a String but code

 doesn't set d1 to refer to that new String)

E. ack_

F. 5

G. ge--2.72g27.50 (2 clear underscores between ge and 2.72g27.50

H. 47

I. RUNTIME ERROR (Exception okay as well)

J. The Scanner creation must be in a try-catch block OR the method must

 throw a FileNotFound (or IOException). (Or words to that affect.)

K. 3 6

L. 19 vector

M. 0 [0, 0, 0] (differences in bracket style okay, but some form of

bracket must be present)

N. [-3, 3, 4, 13] (differences in bracket style okay)

2. Program Logic (0.5 each)

 c < x e < 5 e > 0

POINT A
A A N

POINT B
A A S

POINT C
S A S

POINT D
S S A

POINT E
S S S

 2

3. Strings - 10 Points. Write a method getEqualStart that accepts two Strings as parameters.

 public static String getEqualStart(String s1, String s2) {

 int i = 0;

 int limit = s1.length();

 if (s2.length() < s1.length)

 limit = s2.length();

 while (i < limit && s1.charAt(i) == s2.charAt(i)) {

 i++;

 }

 return s1.substring(0, i);

 }

Alternate solution using a boolean and concatenation

public static String getEqualStart(String s1, String s2) {

 int i = 0;

 String result = "";

 boolean same = true;

 while (i < s1.length() && i < s2.length() && same)) {

 if (s1.charAt(i) == s2.charAt(i)) {

 result += s1.charAt(i);

 i++;

 } else

 same = false;

 }

 return result;

correctly check index for charAt is less than both String lengths (no String index out of bounds errors), 3 points

correctly access characters via charAt, 1 point (lose this if create many new Strings using substring instead of

charAt)

correctly track and increment current index, 1 point

stop as soon as characters mismatch. (return from inside loop okay), 2 points

correctly build up result via concatenation or creating String at end via substring method, 2 points

return result, 1 point

OTHER:

infinite loop, - 6

bounds check wrong in this way: s1.charAt(i) == s2.charAt(i) && i < limit, -2

adding too many chars in addition to bounds check off, -2

nested loop (typically not correct, too many chars added) -5

 3

4. 17 points Write a method that given a Scanner already connected to a file and a target char, returns the

token in the file that contains the target char the largest number of times.

 public static String tokenWithMost(Scanner sc, char tgt) {

 String result = "";

 int max = 0;

 while (sc.hasNext()) {

 String token = sc.next();

 int count = 0;

 for (int i = 0; i < token.length(); i++) {

 if (token.charAt(i) == tgt) {

 count++;

 }

 }

 if (count > max) {

 result = token;

 max = count;

 }

 }

 return result;

 }

variables to track max frequency and init to value <= 0, 1 point

variable to track String with most, 1 point

while with hasNext(), 3 points

get next token correctny, 1 point

loop through token correctly, 3 points (lose this if use indexOf or anything besides charAt and legnth)

count number of occurrences of target char in current token correctly, 3 points (if statement, variable, increment

on matches)

correctly check if current token has largest number of occurrences of target and re assign variables correctly, 3

points (-1 of do this inside inner loop)

correctly return empty String if no occurrences, 1 point (can achieve via init var to "")

return correct result, 1 point

early return, -6

not resetting inner count variable for number of chars in token, -3

creating new Scanners, -4

substring method, -4

 4

5. programming. Write a method, lines that generates random line segments until the sum of the length of

the generated line segments is greater than a given limit

 public static int lines(int min, int max, int limit) {

 int count = 0;

 int total = 0;

 int range = max - min + 1;

 Random r = new Random();

 while (total <= limit) {

 count++;

 int len = r.nextInt(range) + min;

 total += len;

 }

 return count;

 }

variable for count of lines and cumulative sum, both initialized to 0, 1 point (missing either -1)

correctly create object of type Random, 1 point (lose if do this inside loop)

correct while loop, 3 points (-1 if < instead of <=, limit >= total okay)

correctly increment counter in loop ,1 point

correctly get random line length, equation for length correct, 4 points

 range = max - min instead of max - min + 1 -> -1

 not adding min to result, -2

 two parameters to nextInt, lose all 4

add current line to running total, 1point

return correct result, 1 point

Other:

Any output, -2

Calling nextInt more than once per number. -4

 (can be a significant efficiency hit. min = 90,000, max = 90,020??)

 5

6. Scanners. 17 points. Write a method aveOfDoubles that given a Scanner already connected to a file,

prints out the average of the doubles in each line in the file.

 public static void aveOfDoubles(Scanner sc) {

 int line = 0;

 while (sc.hasNextLine()) {

 line++;

 Scanner lineScanner = new Scanner(sc.nextLine());

 int count = 0;

 double sum = 0.0;

 while (lineScanner.hasNext()) {

 if (lineScanner.hasNextDouble() && !lineScanner.hasNextInt()) {

 count++;

 sum += lineScanner.nextDouble();

 } else {

 lineScanner.next();

 }

 }

 System.out.print(line + ": ");

 if (count == 0) {

 System.out.println("no doubles");

 } else {

 System.out.println("sum = " + sum + ", ave = " + sum / count);

 }

 }

 }

line counter, 1 point

outer while loop for hasNextLine(), 1 point

create new Scanner from next line, 1 point

increment line counter correctly, 1 point

variables for sum and number of doubles, 1 point

correct loop for hasNext on line scanner, 3 points

correctly check next token is a double but not an int, 4 points

if next is only a double, read and increment total and count correctly, 2 points

correctly consume next token if not a double, 1 point (-4 if too many calls to next and skips possible double

tokens)

output for line correct, 2 points (lose if don't handle case when there are no doubles on a line)

Other:

line counter declared inside instead of outside of loop (all lines are #1), -3

not resetting sum of line and counter for line, - 4
skips lines incorrectly, -5

infinite loop, -7

reads while file as a single line, -8

 6

7. Arrays. 8 points. Write a method named equalsTarget that given an array of ints and an int that

represents a target sum, returns true if the sum of all the elements in the array equal the target sum, false

otherwise.

 public static boolean equalsTarget(int[] data, int tgt) {

 int total = 0;

 for (int i = 0; i < data.length; i++) {

 total += data[i];

 }

 return total == tgt;

 }

method header correct, 1 point (lose if Boolean instead of boolean, compiles, but use primitive)

variable for total, initialized to 0, 1 point (or subtract from parameter target)

for loop with correct bounds, 3 points (-1 if length() instead of length)

correctly access array elements, 1 point

add elements to running total correctly, 1 point

return correct result, comparing sum to target, 1 point

off by one on number of elements checked -3

off by more than one on number of elements checked -5 total (doesn't sum all elements)

