
 CS 314 – Midterm 1 – Fall 2011 1

 Points off 1 2 3 4 5 Total off Net Score

CS 314 – Midterm 1 – Fall 2011

Your Name____________________________________

Your UTEID __________________________________

Circle yours TA’s name: Swati Yuanzhong

Instructions:

1. There are 5 questions on this test.

2. You have 2 hours to complete the test.

3. You may not use a calculator or any other electronic devices while taking the test.

4. When writing a method assume the preconditions of the method are met.

5. When writing a method you may add helper methods if you wish.

6. When answering coding questions ensure you follow the restrictions of the question.

7. When you complete the test show the proctor your UTID and give them the test and any scratch

paper. Please leave the room quietly.

1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.

a. If a question contains a syntax error or other compile error, answer “Compile error”.

b. If a question would result in a runtime error or exception answer “Runtime error”.

c. If a question results in an infinite loop answer “Infinite loop”.

d. Recall when asked for Big O your answer should be the most restrictive correct Big O

function. For example Selection Sort has an average case Big O of O(N
2
), but per the

formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N
3
) or

O(N
4
). I want the most restrictive, correct Big O function. (Closest without going under.)

A. What is the T(N) for method a? Recall, T(N) is the function that represents the actual number of

executable statements for a function or algorithm. N = listA.length = listB.length

// pre: listA.length == listB.length

public int a(int[] listA, int[] listB) {

 int total = 0;

 for(int i = 0; i < listA.length; i++)

 for(int j = 0; j < listB.length; j++) {

 total += listA[i] * listB[j];

 total += listA[i] / 10;

 total += listB[j] / 100;

 }

 return total;

}

B. What is the order (Big O) of method a?

 CS 314 – Midterm 1 – Fall 2011 2

C. What is the best case order (Big O) of method c? N = data.length

public int c(int[] data, int tgt){

 int result = 0;

 for(int i = 0; i < data.length; i++)

 if(data[i] == tgt)

 result++;

 return result;

}

D. What is the worst case order (Big O) of method d? Assume Arrays.fill is O(N) and

method process is O(N). N = data.length

public int[] d(int[] data, int key) {

 int[] result = new int[0];

 for(int i = 0; i < data.length; i++) {

 if(data[i] == key) {

 result = new int[data.length];

 Arrays.fill(data, i);

 process(data, i, key);

 }

 }

 return result;

}

E. What is the worst case order (Big O) of method e if the parameter list is a Java

ArrayList?

public void e(List<E> list, Object target) {

 for(int i = 0; i < list.size(); i++)

 if(list.get(i) == target)

 list.remove(0); // position;

}

F. What is the worst case order (Big O) of method e if the parameter list is a Java

LinkedList?

G. A method is O(N
2
). It takes 2 seconds for the method to run when N = 500,000.

What is the expected time for the method to run when N = 2,500,000?

H. A method is O(Nlog2N). It takes 10 seconds for the method to run when N = 1,000,000.

What is the expected time for the method to run when N = 4,000,000?

 CS 314 – Midterm 1 – Fall 2011 3

I. You do not have the source code to analyze a method so you have run a series timing experiments on

it. Based on the following results, what is the most likely order (Big O) for the method?

 N Time to complete

 100,000 1 second

 200,000 2.1 seconds

 400,000 4.0 seconds

 800,000 7.8 seconds

For questions J - N consider the following classes and interfaces.
public interface Auctionable {

 public int getPredictedPrice();

}

public abstract class StorageUnit implements Auctionable {

 private int costPerMonth;

 public StorageUnit(int c) { costPerMonth = c; }

 public int cost() { return costPerMonth; }

 public String toString() { return "cost: " + cost(); }

 public int getPredictedSize() { return costPerMonth / 10; }

}

public class IndoorStorageUnit extends StorageUnit {

 private boolean guarded;

 public IndoorStorageUnit(int c, boolean g) {

 super(c);

 guarded = g;

 }

 public int cost() { return 1000; }

 public int getPredictedPrice() { return super.cost() * 2; }

 public String toString() { return "guard: " + guarded; }

}

public class POD implements Auctionable {

 private int size;

 public POD(int s) { size = s; }

 public int getPredictedPrice() { return size * 100; }

 public String toString() { return "POD: " + size; }

}

 CS 314 – Midterm 1 – Fall 2011 4

J. State if each of the following declarations is valid (meaning it will compile with no error)

 or invalid (meaning it causes a syntax error). (1 point each)

Auctionable a1 = new Auctionable(); // J.1

Auctionable a2 = new IndoorStorageUnit(100, true); // J.2

K. State if each of the following declarations is valid (meaning it will compile with no error)

 or invalid (meaning it causes a syntax error). (1 point each)

Object obj = new StorageUnit(); // K.1

StorageUnit st = new POD(6); // K.2

L. What is output by the following code?

IndoorStorageUnit isu1 = new IndoorStorageUnit(500, true);

System.out.print(isu1.getPredictedSize() + " " + isu1.cost());

M. What is output by the following code?

StorageUnit st2 = new IndoorStorageUnit(500, true);

System.out.print(st2.cost() + " " + st2);

N. What is output by the following code?

Auctionable a1 = new POD(5);

System.out.print(a1.getPredictedPrice() + " " + ((POD) a1).toString());

O. Recall the IntList class we developed in lecture.

public IntList() // create an empty IntList

public int size() // return the size of this IntList

public void add(int val) // add val to the end of this IntList

public void insert(int pos, int val) // insert val at the specified position

public String toString() // return a String representation of this IntList

What is output by the following code?

IntList list1 = new IntList();

System.out.print(list1.size() + " "); // single space

list1.insert(0, 8);

list1.add(2);

list1.insert(1, 16);

System.out.print(list1);

 CS 314 – Midterm 1 – Fall 2011 5

2. The GenericList class. (20 points) To demonstrate encapsulation and the syntax for building a

class in Java, we developed a GenericList class to represent a list. Recall our GenericList

class stores the elements of the list in the first N elements of a native array. An Item's position in the list is

the same as the item's position in the array. The array may be larger than the list being represented.

Complete an instance method for the GenericList class named trimEqualBacks. The method

removes the back (rightmost) equal portions of two lists. The method also returns an int equal to the

number of elements removed from the calling list.

The method header is:

/* pre: other != null, other != this

 post: trim (remove) the back, rightmost portions of this list and

other that are equal to each other. Return the number of elements

removed from this list.

*/

public int trimEqualBacks(GenericList<E> other) {

Examples of calls to trimEqualBacks.

[].trimEqualBacks([]) returns 0, lists unchanged

[A].trimEqualBacks([]) returns 0, lists unchanged

[].trimEqualBacks([A]) returns 0, lists unchanged

[A].trimEqualBacks([A]) returns 1, lists now [] and []

[A, B].trimEqualBacks(B, A]) returns 0, lists unchanged

[B, A, A, A, C].trimEqualBacks(A, A, A, B, A, A, C]) returns 3,

 lists now [B, A] and [A, A, A, B]

[B, A, A, A].trimEqualBacks(A, A, A, B, A, A, A]) returns 4,

 lists now [] and [A, A, A]

You may not use any other methods in the GenericList class unless you define and implement

them yourself as part of your answer. You may not use objects or methods from other Java classes

except the equals method. Your solution shall be O(1) space meaning you may not use

temporary arrays.

Recall that since this method is in the GenericList class, you have access to all

GenericLists' instance variables.

Recall the GenericList class:

public class GenericList<E> {

 private E[] values;

 private int size; // size of list being represented

 CS 314 – Midterm 1 – Fall 2011 6

Complete the following instance method for the GenericList class.

/* pre: other != null, other != this

 post: trim (remove) the back, rightmost portions of this list and

other that are equal to each other. Return the number of elements

removed from this list.

*/

public int trimEqualBacks(GenericList<E> other) {

 CS 314 – Midterm 1 – Fall 2011 7

3. (15 points total) The MathMatrix class. Write an instance method getNumUniformColumns for

the MathMatrix class from assignment 2 that determines how many columns in the MathMatix

consist of equal coefficients.

Consider this example with a 3 x 4 matrix

 �1 3 4 −21 2 −1 −21 1 2 −2�

Given the above MathMatrix the getNumUniformColumns method would return 2 because the

first column consists of all 1's and the last column consists of all -2's

Recall the MathMatrix class:

public class MathMatrix {

 private int[][]coefficients; // no extra capacity.

 public int numRows() // the number of rows in this matrix

 public int numCols() // the number of columns in this matrix

 // pre: 0 <= r < numRows(), 0 <= c < numCols()

 // return the value at the given location

 public int getValue(int r, int c)

Complete the following instance method in the MathMatrix class. You may not use any other

methods from the MathMatrix class other than those shown above unless you implement them

yourself as part of your answer. You may not use methods or classes from the Java standard

library.

/* pre: numRows() > 1

 post: return the number of columns in this MathMatrix that

 contain all equal coefficients.

*/

public int getNumUniformColumns() {

Complete this method

on the next page.

 CS 314 – Midterm 1 – Fall 2011 8

/* pre: pre: numRows() > 1

 post: return the number of columns in this MathMatrix that

 contain all equal coefficients.

*/

public int getNumUniformColumns() {

 CS 314 – Midterm 1 – Fall 2011 9

4. Working with Maps, NameSurfer (20 points total) Write an instance method for the Names class

from assignment 4 that updates the NameRecord objects it stores with ranks for a new decade and adds

NameRecords for names that have not appeared in any previous decade.

For this question the Names class stores its NameRecords in a Map. The keys of the Map are

Strings (the name such as "Olivia" or "Bob") and the values are the NameRecord objects

themselves.

The newDecade method in the Names class accepts another Map as a parameter. The keys of this

Map are Strings (the top names for the decade being added to the Names object) and the values are

Integer objects corresponding to the rank of the name for the new decade. All ranks are greater than 0.

For names that are already in Name's map, update the NameRecord object with the rank for the new

decade. For names that are not present create a new NameRecord object with all previous ranks set to

0 indicating the name was not ranked in any previous decade plus the rank for the new decade. All

NameRecord objects the Names class stores must have the same number of ranks. The number of

decades is stored as an instance variable in the Names class.

Consider this example: The Names class stores NameRecords with ranks for 8 decades. The

following names and ranks for a new decade are being added to the Names class:

name rank in new decade already present in Names

Olivia 12 yes

Trinity 956 no

The NameRecord that contains Olivia would have the rank 12 added. The name Trinity did

not appear in any previous decade so the method must construct a new NameRecord with the

String "Trinity 0 0 0 0 0 0 0 0 956", a 0 for each of the 8 previous decades in which

Trinity did not appear. The new NameRecord is added to Name's map.

Your method must also update records that are present in Names but were not ranked in the new decade

by adding a rank of 0 to them.

The NameRecord class for this question is:

public class NameRecord {

 // create a new NameRecord based on data.

 // data is space delimited with the name first and the ranks

 // following.

 public NameRecord(String data)

 // add a rank for a new decade to the end of this NameRecord.

 public void addRank(int newRank)

 /* return the number decades this NameRecord has ranks for

including unranked decades.(0s) */

 public int numDecades()

 CS 314 – Midterm 1 – Fall 2011 10

Recall these methods from the Map interface:

• Set<K> keySet() - Returns a Set view of the keys contained in this map.

• V get(Object key) - Returns the value to which the specified key is mapped, or null if this

map contains no mapping for the key.

• boolean containsKey(Object key) - Returns true if this map contains a mapping for the

specified key.

• V put(K key, V value) - Associates the specified value with the specified key in this map

Recall this method from the Set interface:

• Iterator<E> iterator() Returns an iterator over the elements in this set.

Recall these methods from the Iterator interface:

• boolean hasNext() - Returns true if the iteration has more elements.

• E next() - Returns the next element in the iteration.

• void remove() - Removes from the underlying collection the last element returned by the

iterator

And finally the Names class itself:

public class Names {

 private Map<String, NameRecord> data;

 private int numDecades; // number of decades for each NameRecord

 // method to complete in this question:

 // pre: newRanks != null, all values in newRanks > 0

 // post: per the question description

 public void newDecade(Map<String, Integer> newRanks) {

You are not allowed to use any methods except those listed in this question and String creation

(for example String st = "something";) and concatenation.

Complete this method

on the next page.

 CS 314 – Midterm 1 – Fall 2011 11

// pre: newRanks != null, all values in newRanks > 0

// post: per the question description

public void newDecade(Map<String, Integer> newRanks) {

 CS 314 – Midterm 1 – Fall 2011 12

Scratch paper - GO ON TO QUESTION 5.

 CS 314 – Midterm 1 – Fall 2011 13

5. (Linked Lists 15 points). Write a method for a LinkedList class that determines the number of

elements in the list "less than" some given value.

The properties of the LinkedList class:

• The list uses singly linked nodes that store one piece of data and a reference to the next node in the

list.

• The only instance variable in the LinkedList class is a reference to the first node in the list.

• If the list is empty the reference to the first node is set to null.

• The last node's next reference is set to null.

• The LinkedList and Node objects are generic based on Java's generic syntax.

• All elements stored in the linked list implement the Comparable interface. The parameter tgt

and all elements of the list implement the Comparable interface. No casting is necessary.

Your method must be O(1) space, meaning you cannot use temporary arrays, lists, or other data structures

whose size depends on the number of elements in the linked list.

You may not use any other classes or methods, except the Node class and the compareTo method.

Your method should be as efficient as possible given the constraints. The instance method to complete is:

/* pre: tgt != null

 post: return the number of elements in this LinkedList that are

 less than tgt based on the compareTo method.

*/

public int numLessThan(E tgt) {

Here are some examples and the expected results for various lists of Integer objects.

[].numLessThan(12) - returns 0

[12, 12, 12, 12, 13].numLessThan(12) - returns 0

[12, 12, 12, 12, 13].numLessThan(13) - returns 4

[16, 32, 18, 14, -8, -8, -32].numLessThan(50) - returns 7

Recall the Node class:

public class Node<E> {

 public Node(E data, Node<E> next)

 public E getData()

 public Node<E> getNext()

 public void setData(E data)

 public void setNext(Node<E> next)

}

 CS 314 – Midterm 1 – Fall 2011 14

Recall the Comparable interface and its one method, compareTo:

public interface Comparable<E> {

 public int compareTo(E other);

 /* returns a negative integer, zero, or a positive integer as

this object is less than, equal to, or greater than the specified

object, other.*/

public class LinkedList<E extends Comparable<E>> {

 private Node<E> first;

Complete the following method:

/* pre: tgt != null

 post: return the number of elements in this LinkedList that are

 less than tgt based on the compareTo method.

*/

public int numLessThan(E tgt) {

 CS 314 – Midterm 1 – Fall 2011 15

Scratch Paper

 CS 314 – Midterm 1 – Fall 2011 16

Question 1 answer Sheet.

Name___

A.

B.

C.

D.

E.

F.

G.

H.

I.

 1.

J. 2.

 1.

K. 2.

L.

M.

N.

O.
