
 CS 314 – Exam 1 – Fall 2016 1

 Points off 1 2 3 4 5 6 Total off Net Score

CS 314 – Exam 1 – Fall 2016

Your Name____________________________________

Your UTEID __________________________________

Instructions:

1. There are 6 questions on this test. 100 points available. Scores will be scaled to 180 points.

2. You have 2 hours to complete the test.

3. Place your final answers on this test. Not on scratch paper. Answer in pencil.

4. You may not use a calculator or any other electronic devices while taking the test.

5. When answering coding questions, ensure you follow the restrictions of the question.

6. Do not write code to check the preconditions unless the question requires it.

7. On coding questions you may implement your own helper methods.

8. On coding questions make your solutions as efficient as possible given the restrictions of the question.

9. Test proctors will not answer any questions regarding the content of the exam. If you think a question

is ambiguous or has an error, state your assumptions and answer based on those assumptions.

10. When you complete the test show the proctor your UTID, give them the test and all the scratch paper,

used or not, and leave the room quietly.

1. (1 point each, 20 points total) Short answer. Place your answer on the line next to or under the question.

Assume all necessary imports have been made.

a. If a question contains a syntax error or other compile error, answer compile error.

b. If a question would result in a runtime error or exception, answer runtime error.

c. If a question results in an infinite loop, answer infinite loop.

d. Recall when asked for Big O your answer should be the most restrictive correct Big O

function. For example Selection Sort has an average case Big O of O(N2), but per the formal

definition of Big O it is correct to say Selection Sort also has a Big O of O(N3) or O(N4).

I want the most restrictive, correct Big O function. (Closest without going under.)

A. What is the T(N) of methodA? Recall, T(N) is a function that represents the actual number of

executable statements for an algorithm. N = data.length

public double methodA(int[] data) { ____________________

 int r = 0;

 final int LIMIT = data.length / 2;

 for (int i = 0; i < data.length; i++) {

 int s = data[i];

 for (int j = 0; j < data.length; j++) {

 int t = data[j];

 for (int k = 0; k < LIMIT; k++) {

 r += s * t * data[k];

 }

 }

 }

 return 1.0 * r / data.length;

}

 CS 314 – Exam 1 – Fall 2016 2

B. What is the order (Big O) of methodA? N = data.length ____________________

C. What is the worst case order (Big O) of methodC? N = data.length

// pre: data.length >= 5

public int methodC(int[] data, int tgt) {

 int r = 0;

 final int LIMIT = data.length - 3;

 for (int i = 2; i < LIMIT; i++)

 if (data[i] < tgt)

 for (int k = 1; k < data.length; k *= 3)

 r += data[i] - data[k];

 else

 for (int k = i - 2; k <= i + 2; k++)

 r += data[i] * data[k];

 return r;

}

D. What is the order (Big O) of methodD? N = n _______________

 Assume the nextInt method from the Random class is O(1).

public double methodD(int n, Random r) {

 double result = 0.0;

 for (int i = 0; i < n; i++) {

 double[] d = new double[n];

 int i1 = r.nextInt(n);

 int i2 = r.nextInt(n);

 int i3 = r.nextInt(n);

 result += d[i1] + d[i2] + d[i3];

 }

 return result;

}

E. What is the worst case order (Big O) of methodE? N = data.length _______________

public ArrayList<String> methodE(String[] data, int tgt) {

 ArrayList<String> r = new ArrayList<String>();

 for (int i = 0; i < data.length; i++) {

 if (data[i].length() < tgt)

 r.add(data[i]);

 else {

 r.add(data[i]);

 r.add(r.size() / 2, data[i]); // insert method

 }

 }

 return r;

}

 CS 314 – Exam 1 – Fall 2016 3

F. What is the worst case order (Big O) of methodF? N = list.size() _______________

public void methodF(ArrayList<Integer> list, int x) {

 Iterator<Integer> it = list.iterator();

 while (it.hasNext()) {

 if (it.next() < x) {

 it.remove();

 }

 }

}

G. What is the best case order (Big O) of methodG? N = list.size() _______________

// pre: data != null

public ArrayList<Double> methodG(ArrayList<Double> list, double tgt) {

 ArrayList<Double> result = new ArrayList<Double>();

 for (double d : list) {

 if (d > tgt) {

 result.add(0, d); // insert method

 }

 }

 return result;

}

H. A method is O(N
2
). It takes 2 second for the method to run when N = 2,000 .

What is the expected time in seconds for the method to run when N = 8,000?

I. A method is O(2
N
). It takes 0.25 seconds for the method to run when N = 40.

What is the expected time in seconds for the method to run when N = 60?

J. A method is O(Nlog2N). It takes 20 seconds for the method to run when N = 1,000,000.

 What is the expected time in seconds for the method to run when N = 2,000,000?

 CS 314 – Exam 1 – Fall 2016 4

K. Given the following timing data for a method what is the most likely order (Big O) of the method?

N (amount of data) time to complete ______________________

1,000 1 second

2,000 16 seconds

4,000 256 seconds

L. The following methods takes 5 seconds to complete when list.size() = 10,000.

What is the expected time for the method to complete when list.size() = 20,000

public int methodL(ArrayList<Integer> list) ______________________

 int t = 0;

 for (int i = 0; i < list.size(); i++) {

 for (int j = list.size() - 1; j >= i; j--) {

 t += list.get(i) * list.get(j);

 }

 }

 return t;

}

M. What is output by the following code? ___

Map<Integer, Integer> mapM = new TreeMap<Integer, Integer>();

mapM.put(-5, 3); // key, value

mapM.put(3, 7);

mapM.put(0, -2);

mapM.put(3, 9);

mapM.put(7, mapM.get(3) + 3);

mapM.put(mapM.get(0) + 3, mapM.get(-5));

System.out.println(mapM);

// The Map toString takes the form:

// {key1=value1, key2=value2, ..., keyN=valueN}

N. What is output by the following code? ___

int[] data = {6, 3, 4, 7, 10};

ArrayList<Integer> list = new ArrayList<Integer>();

for (int x : data) {

 list.add(x);

}

Iterator<Integer> it = list.iterator();

while (it.hasNext()) {

 if (it.next() % 2 == 0) {

 System.out.print(it.next() + " ");

 }

}

 CS 314 – Exam 1 – Fall 2016 5

For questions O through T, refer to the classes defined on the sheet at the back of the test.

You may detach that sheet for easier reference.

O. For each line of code write valid if the line will compile without error

 or invalid if it causes a compile error. (.5 points each)

Object obj1 = new Student(12); ___________________

Staff st1 = new Undergrad(); ___________________

P. For each line of code write valid if the line will compile without error

 or invalid if it causes a compile error. (.5 points each)

UTPerson utp1 = new Faculty(3); ___________________

GradStudent gs1 = new Object(); ___________________

Q. What is output by the following code? _________________________________

Undergrad ug1 = new Undergrad();

System.out.print(ug1.toString() + " " + ug1.getPrimeTime());

R. What is output by the following code? _________________________________

UTPerson utp2 = new Faculty(1);

System.out.print(utp2.toString() + " " + utp2.getHours());

S. What is output by the following code? _________________________________

Student[] stus = new Student[2];

stus[0] = new GradStudent(10);

stus[1] = new Undergrad();

for (Student st : stus) {

 System.out.print(st + " ");

}

T. What is output by the following code? _________________________________

UTPerson[] utps = {new Faculty(4), new Staff(), new GradStudent(6)};

for (UTPerson person : utps) {

 System.out.print(person.getPrimeTime() + " ");

}

 CS 314 – Exam 1 – Fall 2016 6

2. The GenericList class (16 points) To demonstrate encapsulation and the syntax for building a

class in Java, we developed a GenericList class that can store elements of any data type. Recall our

GenericList class stores the elements of the list in the first N elements of a native array. An

element's position in the list is the same as the element's position in the array. The array may be larger

than the list it represents.

Create an instance method for the GenericList class that returns the frequency of a given value in the

list.

Examples of calls to the frequency method. (The values shown are Integer objects)

[].frequency(12) -> returns 0

[12, 1, null, 1, 13].frequency(37) -> returns 0

[12, 1, null, 1, 13].frequency(12) -> returns 1

[12, 1, null, 1, 13].frequency(1) -> returns 2

[12, 1, null, 1, 13].frequency(null) -> returns 1

Note, for this question, the GenericList may contain null values and the parameter itself may store

null. You must deal with these possibilities correctly.

The GenericList class:

public class GenericList<E> {

 private E[] container;

 private int size;

You may not use any methods from the GenericList class unless you implement them yourself as

a part of your solution.

You may call the equals method on objects.

Complete the method on the next page.

 CS 314 – Exam 1 – Fall 2016 7

/// pre: none
// post: return the number of times val occurs in this list.

public int frequency(E val) {

 CS 314 – Exam 1 – Fall 2016 8

3. GenericList (16 points) This question uses the GenericList class from question 2.

Create an instance method for the GenericList class getNonMatchingPairs. The method creates and

returns a new GenericList that contains all the non matching pairs of items from the calling list and another list

sent as a parameter.

Pairs of items are the elements of the two lists at the same index. For example given these two lists

 0 1 2 3

list1 [A, B, C, A]

list2 [A, A, C, D]

the pairs of items are (A, A), (B, A), (C, C), and (A, D). The non matching pairs are (B, A) and (A,D).

The method creates and returns a new list that contains the non matching pairs from the first two lists. The elements

in the resulting list are the same order as the elements from the original lists with elements from the calling list

coming before the element from the other list.

So given the two lists above, the method would return the following list: [B, A, A, D]

For this question you may assume none of the elements in either list equal null. If the lists are different sizes only

paired elements are considered.

For example given these two lists

list1 [D, B, C, A, X, G]

list2 [A, B, Z, M]

the method shall return the following list: [D, A, C, Z, A, M]

The GenericList class:

public class GenericList<E> {

 private static final int DEFAULT_CAPACITY = 10;

 private E[] container;

 private int size;

 public GenericList() {

 container = getArray(DEFAULT_CAPACITY);

 }

 // returns an array of the given capacity

 private E[] getArray(int capacity)

You may only use the method and constructors from the GenericList class shown above.

You may not use any other methods from the GenericList class unless you implement them yourself as a

part of your solution.

 CS 314 – Exam 1 – Fall 2016 9

You may not use any other classes besides GenericList and native arrays.

You may call the equals method on objects.

// pre: other != null, no elements of this or other equal null

// post: per the problem description

public GenericList<E> getNonMatchingPairs(GenericList<E> other) {

 CS 314 – Exam 1 – Fall 2016 10

4. Math Matrix (16 Points) Create a method for the MathMatrix class that returns true if the calling

object is a strictly diagonally dominant matrix. A strictly diagonally dominant matrix is a square matrix

where for every row in the matrix the value on the diagonal (from the upper left to the lower right) is

greater than the sum of all the other elements in that row.

For example:

m1: 4 0 0 Not a strictly diagonally dominant because not a square matrix.

 0 3 -1

m2: 4 -3 A strictly diagonally dominant matrix.
 2 5

m3: 5 2 1 0 A strictly diagonally dominant matrix.
 2 13 -2 5

 0 0 1 0

 8 3 9 21

m4: 8 2 1 2 Not a strictly diagonally dominant matrix.
 9 13 -2 0

 2 3 9 5

 -2 -2 0 1

Recall the MathMatrix class:

public class MathMatrix {

 private int[][] myCells; // no extra capacity

Do not use any other Java classes besides MathMatrix.

You may not use any other methods from the MathMatrix class unless you implement them

yourself as a part of your answer to this question.

Complete the method on the next page.

 CS 314 – Exam 1 – Fall 2016 11

// pre: none

// post: return true if this MathMatrix is a strictly diagonally

// dominant matrix, false otherwise

public boolean isStrictlyDiagonallyDominant() {

 CS 314 – Exam 1 – Fall 2016 12

5. Maps (16 points) Write a method named indexMap that accepts an array of Strings as a parameter

and returns a map with String keys and ArrayLists of Integers values. The lists of Integers

are the indices in the original array at which the String occurred.

For example given an array with the following strings (quotes not shown):

[one, fish, two, fish, Sat, one, book]

the method shall return the following map:

{Sat=[4], book=[6], fish=[1, 3], one=[0, 5], two=[2]}

The map the method returns shall have the keys in sorted order and the list containing the indices shall

contain the indices in sorted String order as in the example.

You may construct a Java Map (TreeMap or HashMap) and use the following Map methods:

put(key, value) adds a mapping from the given key to the given value

get(key) returns the value mapped to the given key (null if none)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

You may create and use ArrayLists.

Complete the method on the next page:

 CS 314 – Exam 1 – Fall 2016 13

// pre: words != null, none of the elements of words == null

// post: pre the problem description

public static Map<String, ArrayList<Integer>> createIndexMap(String[] words)

{

 CS 314 – Exam 1 – Fall 2016 14

6. Other Data Structures (16 points) In class implemented lists that store every value in the list explicitly.

However, what if most of the elements of the list equal the same value? Consider the following list:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 // position

[A, B, A, A, A, A, A, A, A, A, AAA, A, B, A, A, C, A] // element

Storing all those A's seems like a waste of space. In a sparse list, only the elements not equal to the

default value are explicitly stored. The default value is set when the list is created and does not change for

a given list. Internally we use a native array as our storage container so we also store the position of each

element, because the position in the array does not necessarily equal the position in the list.

Consider the following internal representation of the list shown above. Each element in the array is a

ListElem object that stores one element of data and the position of that element in the list.
(position, non-default element)

The elements not equal to the default element, are stored in the array in ascending order based on their

position in the list.

 0 1 2 3 index in array

[(1, B), (10, AAA), (12, B), (15, C)] extra capacity not shown

size of list = 17

elements stored = 4

All elements not stored explicitly equal A for this list.

Complete the E remove(int pos) method for a SparseList class. The method removes

the element at the given position from the list and updates instance variables appropriately.

Here is the ListElem class:

public class ListElem<E> {

 public ListElem(int position, E data) // create element

 public E getData() // return data of this element

 public int getPosition() // return position of this element

 public void setPositon(int pos) // set position of this element

 public void setData(E data) // set data of this element

The properties of the SparseList class are:

 the internal storage container is a native array of ListElem objects

 there may be extra capacity in the native array

 only elements not equal to the default element are stored explicitly

 the non-default elements are stored at the beginning of the array in ascending order based on their

position in the list

 the size of the list, the number of elements stored explicitly in the array, and the default value are

stored in separate instance variables

 CS 314 – Exam 1 – Fall 2016 15

 any elements in the array that are not referring to active elements of the list are set to null

 the default list value never equals null

public class SparseList<E> {

 private ListElem<E>[] values;

 private int sizeOfList;

 // All values not stored explicitly in values equal defaultValue.

 // defaultValue never equals null.

 private final E defaultValue;

 // Number of elements stored explicitly in values.

 // The elements are stored at the beginning of the array.

 // This value could be 0 even if sizeOfList > 0 indicating

 // every element in the list is the default value.

 private int elementsStored;

Complete the remove(int pos) instance method

for the SparseList class on the next page.

 CS 314 – Exam 1 – Fall 2016 16

// pre: 0 <= pos < size()

// post: Remove and return element at given position in this list.

// All elements with position > pos are shifted one position to the left

// in this list. size() = old size() - 1

public E remove(int pos) {

 CS 314 – Exam 1 – Fall 2016 17

For questions O - T, consider the following classes. You may detach this sheet from the test.

public abstract class UTPerson {

 private int hoursLimit;

 private int bookLimit;

 public UTPerson(int hours, int books) {

 hoursLimit = hours;

 bookLimit = books;

 }

 public abstract String getPrimeTime();

 public int getHours() { return hoursLimit; }

 public String toString() {

 return bookLimit + "-" + getHours();

 }

}

public class Staff extends UTPerson {

 public Staff() { super(3, 5); }

 public String getPrimeTime() { return "8-5"; }

}

public abstract class Student extends UTPerson {

 public Student(int hours) { super(hours, 10); }

 public int getHours() { return 15; }

}

public class Undergrad extends Student {

 public Undergrad() { super(20); }

 public String getPrimeTime() { return toString(); }

}

public class GradStudent extends Student {

 public GradStudent(int hours) { super(hours); }

 public String getPrimeTime() { return "12-2"; }

 public int getHours() { return 10; }

}

 CS 314 – Exam 1 – Fall 2016 18

public class Faculty extends UTPerson {

 private int classes;

 public Faculty(int classes) {

 super(0, 30);

 this.classes = classes;

 }

 public String getPrimeTime() { return "MWF"; }

 public int getHours() { return classes * 5; }

 public int officeHours() { return classes * 3; }

 public String toString() {

 return getPrimeTime() + officeHours();

 }

}

