
 CS 314 – Final Exam – Fall 2016 1

 Points off 1 2 3 4 5 6 Total off Net Score

CS 314 – Final Exam – Fall 2016

Your Name____________________________________

Your UTEID __________________________________

Instructions:
1. There are 6 questions on this test. 100 points available. Scores will be scaled to 300 points.

2. You have 3 hours to complete the test.

3. Place you final answers on this test. Not on scratch paper. Answer in pencil.

4. You may not use a calculator or any other electronic devices while taking the test.

5. When answering coding questions, ensure you follow the restrictions of the question.

6. Do not write code to check the preconditions.

7. On coding questions you may implement your own helper methods.

8. On coding questions make your solutions as efficient as possible given the restrictions of the question.

9. Test proctors will not answer any questions regarding the content of the exam. If you think a question

is ambiguous or has an error, state your assumptions and answer based on those assumptions.

10. When you complete the test show the proctor your UTID, give them the test and all the scratch paper,

used or not, and leave the room quietly.

1. (1 point each, 20 points total) Short answer. Place your answer on the line next to or under the question.

Assume all necessary imports have been made.

a. If a question contains a syntax error or other compile error, answer “Compile error”.

b. If a question would result in a runtime error or exception answer “Runtime error”.

c. If a question results in an infinite loop answer “Infinite loop”.

d. Recall when asked for Big O your answer shall be the most restrictive correct Big O

function. For example Selection Sort has an average case Big O of O(N2), but per the

formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N3) or

O(N4). I want the most restrictive, correct Big O function. (Closest without going under.)

A. The following method takes 3 seconds to complete when d.length = 10,000. What is the

expected time for the method to complete when d.length = 20,000?

public int a(int[] d) {

 int result = 0;

 for (int i = 0; i < d.length; i++)

 for (int j = d.length - 1; j >= i; j--)

 for (int k = 0; k < 10; k++) {

 int v = j - k;

 if (v > 0 && d[i] == d[j] && d[i] != d[v])

 result++;

 }

 return result;

}

 CS 314 – Final Exam – Fall 2016 2

B. What is returned by the method call b(7)? ____________________

public int b(int x) {

 if (x <= 0)

 return x * 3;

 else

 return 1 + b(4 + x);

}

C. What is returned by the method call c(8)? ____________________

public int c(int n) {

 if (n <= 2);

 return 1;

 else

 return c(n - 2) + c(n - 1);

}

D. It takes 1 second for the following code to complete when list1.size() = 25,000. What is the

expected time for the method to complete when list1.size() = 50,000?

 Assume list1.size() == list2.size().

public int d(LinkedList<Integer> list1, LinkedList<Integer> list2) {

 int result = 0;

 int n = list1.size();

 for (int i = n - 1; i >= n / 2; i--) {

 for (int j = 0; j < n; j++) {

 if (list1.get(i) % list2.get(j) > 1000) {

 result += list1.get(i) + list1.get(j);

 }

 }

 }

 return result;

}

 CS 314 – Final Exam – Fall 2016 3

E. Consider the following client code of the IntList class and the resize method from the

IntList class. It takes 5 seconds for the client code to complete when N = 500,000. What is the

expected time for the client code to complete when N = 2,000,000?

 // Client code. The value N has already been initialized.

 IntList list = new IntList(); // initial capacity 10

 for (int i = 0; i < N; i++) {

 list.add((int) (Math.random() * 1000000));

 }

 public class IntList {

 private int[] con;

 private int size;

 private int resize() {

 int[] temp = new int[size * 2 + 1]; // A

 for (int i = 0; i < size; i++) {

 temp[i] = con[i];

 }

 con = temp;

 }

 }

F. Assume the line marked //A in the resize method from question 1.E is altered to the

following:

 int[] temp = new int[size + 500]; // A

 The same client code now takes 20 seconds to run when N = 100,000. What is the expected time

for the client code to complete when N = 400,000?

G. The following method takes 10 seconds to complete when N = 1,000,000. What is the expected

time for the method to complete when N = 4,000,000? TreeSet is the java.util.TreeSet

class.

public TreeSet<Integer> getNTree(int N) {

 TreeSet<Integer> result = new TreeSet<>();

 for (int i = 0; i < N; i++) {

 result.add(i * 2);

 }

 return result;

}

 CS 314 – Final Exam – Fall 2016 4

H. Draw the variables, references, and objects that exist after the following code executes. Draw node

objects as shown below and boxes for variables. The example has all instance variables set to

null. The example does not show any of the variables that actually refer to the node object. You

must show all variables and their references in your drawing. Use arrows to show references and a

forward slash to indicate variables that store null. Assume the node class is the doubly linked

node from the linked list assignment and that the fields of the class are all public.

 prev data next

DoubleListNode<Object> n1 =

 new DoubleListNode <Object>(null, "**", null);

 // parameters are prev, data, next

DoubleListNode<Object> n2 =

 new DoubleListNode <Object>(null, new int[]{1, 5}, n1);

n1.next = n2.next;

n1.prev = n2;

I. The following values are inserted into an initially empty binary search tree in the order shown.

The binary search tree using the naïve insertion algorithm demonstrated in lecture. What is the

result of a post order traversal of the resulting tree?

7, 12, 5, 10, 12, 7, -5, 12, 8

__

 CS 314 – Final Exam – Fall 2016 5

J. The following method takes 10 seconds to complete when N = 50,000. What is the expected time

for the method to complete when N = 150,000? The BST_314 class is the binary search tree class

we developed in lecture. The binary search tree using the naïve insertion algorithm and

implements add iteratively.

public BST_314<Integer> getNTree(int N) {

 BST_314<Integer> result = new BST_314<>();

 for (int i = 0; i < N; i += 2) {

 result.add(i / 10);

 }

 return result;

}

K. Recall on the binary search tree assignment you completed an experiment in which you inserted N

random values to a binary search tree and then determined the height of the tree. A student has

turned in the following data for their experiment:

 N AVERAGE HEIGHT OF TREE

 1,000 11.1

 2,000 11.9

 4,000 13.0

 8,000 14.1

 16,000 15.2

 I am skeptical the student actually ran the experiment. Explain why I am skeptical.

Limit your answer to one, concise sentence.

__

L. The following code takes 10 seconds to complete when N = 1,000,000. What is the expected time

for the method to complete when N = 2,000,000? Assume Math.random is O(1).

public HashSet<Double> getRandomSet(int N) {

 HashSet<Double> set = new HashSet<>();

 for (int i = 0; i < N; i++) {

 set.add(Math.random());

 }

 return set;

}

 CS 314 – Final Exam – Fall 2016 6

M. What is the worst case order (Big O) of the following method. The hastSet already contains N

elements. N = hashSet.size().

public void addVals(int[] data, HashSet<Integer> hashSet) {

 int i = 0;

 while (i < data.length && i < 5) {

 hashSet.add(data[i]);

 i++;

 }

} ____________________

N. The following values are inserted 1 at a time in the order shown into a min heap using the

 algorithm demonstrated in lecture. Draw the resulting min heap as a tree.

9, 5, 3, 9, 0, 5

O. Consider the following code. The PrintStream object is connected to an initially empty file.

When the file is processed via a SimpleHuffProcessor, the resulting file is larger than the original.

Explain why in one concise sentence.

public void createFile(PrintStream out) {

 Random r = new Random();

 final int LIMIT = 256;

 for (int i = 0; i < 2_000_000; i++) {

 out.print((char) r.nextInt(LIMIT));

 }

}

__

 CS 314 – Final Exam – Fall 2016 7

P. Is the following tree a Red-Black tree? If not, explain why not.

 Nodes not labeled RED are BLACK.

Q. What is the cost of the shortest (cheapest) path from Vertex A to Vertex G in the example Graph

on coding question 5?

R. In general why would you implement an algorithm recursively rather than iteratively?

__

S. On the graph assignment for the year 2008 there were approximately 200 distinct teams and

approximately 800 edges in the graph. Is this a sparse graph or a dense graph?

T. What is the advantage of creating a dynamic programming solution to solution rather than creating

a solution that uses recursion?

__

10

0 30

20 50

RED 35 150 RED

 CS 314 – Final Exam – Fall 2016 8

2. Linked Lists - 16 points. Complete the removeEveryNth instance method for the

LinkedList314 class. The method removes the first element in the linked list and every Nth element

after that. The method returns the number of elements removed from the list.

 You may not use any other methods in the LinkedList314 class unless you implement

them yourself as a part of your solution.

 The LinkedList314 class uses singly linked nodes.

 The list has a reference to the first node in the linked structure of nodes.

 When the list is empty, first is set to null.

 If the list is not empty the last node in the list has its next reference set to null.

 You may use the nested Node class.

 You may not use any other Java classes or native arrays.

public class LinkedList314<E> {

 // refers to first node in the chain of nodes.

 private Node<E> first;

 // No other instance variables

 // The nested Node class.

 private static class Node<E> {

 private E data;

 private Node<E> next;

 }

}

Examples of calls to removeEveryNth(int n). In this example the lists contain Integer objects.

The elements that are removed are bolded. The resulting list is shown on the right.

[].removeEveryNth(3) -> [], returns 0

[0].removeEveryNth(2) -> [], returns 1

[0, 1].removeEveryNth(2) -> [1], returns 1

[0, 1, 2].removeEveryNth(2) -> [1], returns 2

[0, 1, 2, 3].removeEveryNth(2) -> [1, 3], returns 2

[0, 1, 2, 3].removeEveryNth(1) -> [], returns 4

[0, 1, 2, 3].removeEveryNth(3) -> [1, 2], returns 2

[0].removeEveryNth(3) -> [],returns 1

[0, 1].removeEveryNth(3) -> [1], returns 1

[0, 1, 2, 3, 4, 5, 6, 7].removeEveryNth(3) -> [1, 2, 4, 5, 7],

 returns 3

 CS 314 – Final Exam – Fall 2016 9

Complete the following instance method of the LinkedList314 class.

/* pre: n >= 1

 post: per the question description */

public int removeEveryNth(int n) {

 CS 314 – Final Exam – Fall 2016 10

3. Binary Trees - 16 points. Complete the getCombinedTrees method for a binary tree of ints class.

The binary tree class for this question stores ints, but it is not a binary search tree.

The method creates and returns a new IntTree that is the combination of the nodes of the calling

IntTree and another IntTree sent as a parameter.

You may use the nested BNode class, but no other Java classes or methods.

Consider the following trees and the expected result.
 this other result

 8 18 3

 / \ / \ / \

 9 4 12 19 3 3

 / / \ \ \ / \ / \

 5 6 0 13 17 1 2 1 3

 / \ / \

 7 15 1 2

 / /

 14 2

A node exists in the result if it exists in the same position in either the calling tree, the other tree or both. Note,

the result is based on the structure of the two original trees, not the values in the original trees.

All values stored in nodes in the resulting tree will be 1, 2, or 3. A node stores a 1 if that node existed only in

the calling tree (this), a 2 if that node existed only in the other tree, and a 3 if it existed in both trees.

For example the node in the calling tree that contains a 5 (left - left from root) only exists in that tree. So the

node in the result (left - left from root) contains a 1.

The node in the other tree that contains a 13 (left - right from root) only exists in that tree. So the node the

result (left - right from root) contains a 2.

Both trees have a root node, so the root node in the result contains a 3.

public class IntTree {

 private BNode root; // root == null iff tree is empty

 public IntTree() { root = null; }

 private static class BNode {

 private int value;

 private BNode left;

 private BNode right;

 }

}

Complete the following instance method for the IntTree class. You may use the IntTree constructor and

the BNode class. Do not use any other methods from the IntTree class unless you implement them as part

of your answer. Do not create any data structures besides the resulting IntTree.

 CS 314 – Final Exam – Fall 2016 11

/* pre: other != null

 post: Return a new IntTree per the problem description.

 Neither this or other are altered as a result of this method. */

public IntTree getCombinedTrees(IntTree other) {

 CS 314 – Final Exam – Fall 2016 12

4. Huffman Code Trees (16 points) - On the Huffman Coding assignment there were two ways of

building the tree from information in the header of the compressed file. The first was based on the

frequency of each value. The second was based on a binary representation of the tree itself. This question

deals with a third way of building the tree, based on the codes for the values themselves.

Consider the following example of chunks and codes.

Original Value Code

65 "000"

32 "1"

97 "001"

118 "010"

120 "011"

Given the above chunks and codes the resulting Huffman code tree is:

Complete a constructor for the HuffmanTree class that creates a new Huffman code tree based on a

Map of Integer values and String codes. Here is the HuffmanTree class the method is a part of.

public class HuffmanTree {

 private TreeNode root;

 private static class TreeNode {

 private int value;

 private int freq;

 private TreeNode left;

 private TreeNode right;

 }

Complete the following method. You may use methods from the Map interface, iterators, and Strings.

DO NOT USE RECURSION IN YOUR ANSWER.

65

 120

32

118
97

 CS 314 – Final Exam – Fall 2016 13

/* pre: codes != null

 all chars in code's values are equal to '0' or '1'

 post: the HuffmanTree has been created based on codes

*/

public HuffmanTree(Map<Integer, String> codes) {

 CS 314 – Final Exam – Fall 2016 14

5. Graphs - 16 points. Write a method that uses recursive backtracking to find the longest path from one

vertex to another in a directed, weighted graph. For a weighted graph the longest path is the costliest path

from the start vertex to the goal vertex.

Restrict the longest path to a simple path. A simple path is one where no vertex is visited more than once.

In a graph with cycles such as the one below we could create an infinite cost in some cases by running

through the cycle of C to F to G and back to C.

For example if the start vertex is A and the

goal vertex is G the costliest path is A -> B ->

H -> G with a total cost of 45.

Complete a helper method that uses recursive

back tracking to find the longest path (highest

cost) from the given start vertex to the given

end vertex.

You may assume there is at least one path

from the start vertex to the end vertex.

You may assume all edge costs are greater

than or equal to 0.

public class Graph {

 // The vertices in the graph.

 private Map<String, Vertex> vertices;

 private static class Vertex {

 private String name;

 private List<Edge> adjacent;

 private int scratch;

 }

 private static class Edge {

 private Vertex dest;

 private double cost;

 }

}

You may use the Map, Vertex, Edge, List, and Iterator, classes.

Do not create ANY additional data structures.

 CS 314 – Final Exam – Fall 2016 15

/* pre: start and end are vertices in this Graph. There is at least

 one path from start to end.

 post: Returns the longest, simple path from start to end.*/

public double longestPath(String start, String end) {

 clearAll(); // resets are Vertex scratch variables to 0

 // complete the parameters for your method

 return help(

}

private double help(

 CS 314 – Final Exam – Fall 2016 16

6. Dynamic Programming - 16 points. Write a dynamic programming solution for the following

problem. A rectangular matrix of ints stores the number of coins in each cell. Each individual coin has

the same value. You must start in the top left corner of the matrix and move to the bottom right corner.

When moving to the next cell you are only allowed to move down or to the right.

We pick up the coins in each cell we pass through including the top left and bottom right cells.

The goal is to find the path that results in the greatest number of coins being collected.

Recall we must start from the top left cell that contains 6 coins and we must end in the bottom right cell

that contains 1 coin. From a given cell we can only move down or to the right. So from the top left cell

with 6 coins we may move down to the cell with 1 coin or to the right to the cell that contains 10 coins.

6 10 4 5 3 6 10 4 5 3

1 1 2 2 2 1 1 2 2 2

5 7 30 5 2 5 7 30 5 2

2 1 10 2 10 2 1 10 2 10

2 2 5 10 1 2 2 5 10 1

One greedy solution would simply go down or right to the cell that has the larger number of coins. Clearly

that doesn't always give the optimal answer. The result of the proposed greedy solution (simply moving

from the current cell to the cell with the max coins down or to the right) doesn't work with the given

matrix. At cell[0][1] with 10 coins the greedy solution goes right to the cell with 4 coins instead of down

to the cell with 1 coin. But this approach causes us to miss out on the cell with 30 coins.

The optimal solution is shown below. This results in 80 coins being collected.

We could implement a brute force, recursive back tracking

solution that explores all paths and returns the optimal result.

The choices at each cell would be to go right if possible and

down if possible.

Instead, implement a dynamic programming solution to solve

this problem.

Your solution must use an additional 2d array of ints the

same size as the 2d array of ints that contains the coins.

At each cell realize the only way to get to that cell is either from the cell above or to the cell to the left.

Implement your dynamic programming solution on the next page. Do not use recursion!

Do not use any other data structures besides the 2d array of ints the same size as the original

matrix.

Your solution will be graded for clarity and simplicity in addition to correctness.

 CS 314 – Final Exam – Fall 2016 17

// pre: coins != null, coins is a rectangular matrix

// post: Return the maximum number of coins that can be obtained when

// moving from the top left cell of coins to the bottom right cell

// while following the restriction of only moving down or right.

public static int maxCoins(int[][] coins) {

