
 CS 314 – Exam 2 – Fall 2017 1

 Points off 1 2 3 4 5 Total off

CS 314 – Exam 2 – Fall 2017

Your Name____________________________________

Your UTEID __________________________________

Circle your TAs Name: Gilbert Jacob Jorge Joseph Lucas Rebecca Shelby

Instructions:

1. There are 5 questions on this test. 100 points available. Scores will be scaled to 200 points.

2. You have 2 hours to complete the test.

3. Place your final answers on this test. Not on scratch paper. Answer in pencil.

4. You may not use electronic devices of any kind while taking the test.

5. When answering coding questions, ensure you follow the restrictions of the question.

6. Do not write code to check the preconditions.

7. On coding questions, you may implement your own helper methods.

8. On coding questions make your solutions as efficient as possible given the restrictions of the question.

9. Test proctors will not answer any questions regarding the content of the exam. If you think a question

is ambiguous or has an error, state your assumptions and answer based on those assumptions.

10. When you complete the test show the proctor your UTID, give them the test and all the scratch paper,

used or not, and leave the room quietly.

1. (1 point each, 20 points total) Short answer. Place your answer on the line next to or under the question.

Assume all necessary imports have been made.

a. If a question contains a syntax error or other compile error, answer compile error.

b. If a question only results in a runtime error or exception, answer runtime error.

c. If a question only results in an infinite loop, answer infinite loop.

d. Recall when asked for Big O your answer should be the most restrictive correct Big O

function. For example Selection Sort has an average case Big O of O(N2), but per the formal

definition of Big O it is correct to say Selection Sort also has a Big O of O(N3) or O(N4).

I want the most restrictive, correct Big O function. (Closest without going under.)

A. What is returned by the method call a(2)? ____________________

public static int a(int x) {

 if (x > 20)

 return -3;

 else

 return a(x * 3) + x / 3;

}

 CS 314 – Exam 2 – Fall 2017 2

B. What is output by the method call b(7) ? _____________________________________

public static int b(int x) {

 if (x < 0) {

 System.out.print("!" + x);

 return x * -2;

 } else {

 System.out.print(x);

 x = b(x - 3) + 2;

 System.out.print(x);

 return x;

 }

}

C. What is returned by the method call c(20, 5)? ____________________

public static int c(int x, int y) {

 if (x <= y)

 return 1;

 else

 return y + c(x - y, y + 2);

}

D. What is output by the following code? ____________________

System.out.print(d("01234567").length());

public static String d(String s) {

 if (s.length() < 3)

 return s + s;

 else

 return "*" + d(s.substring(1)) + d(s.substring(3));

}

E. The method call e(30) takes 1 second to complete.

 What is the expected time for the method call e(40) to complete?

public static int e(int x) {

 if (x == 0)

 return 2;

 else

 return e(x - 1) + x + e(x - 1);

}

 CS 314 – Exam 2 – Fall 2017 3

F. The following method takes 3 seconds to complete when list is a Java LinkedList with a size

 equal to 100,000 and half of the elements in list are greater than target. What is the expected

time for the method to complete when list is a Java LinkedList with a size

 equal to 400,000 and half of the elements in list are greater than target?

public static void f(List<Integer> list, int target) {

 Iterator<Integer> it = list.iterator();

 while (it.hasNext()) {

 int x = it.next();

 if (x > target) {

 it.remove();

 }

 }

}

G. The method from part F takes 5 seconds to complete when list is a Java ArrayList with a

 size equal to 10,000 and all of the elements in list are greater than target. What is the expected

 time for the method to complete when list is a Java ArrayList with a size

 equal to 100,000 and all of the elements in list are greater than target?

H. Draw the variables, references, and objects that exist after the following code executes. Draw node

objects as shown below and boxes for variables. The example has all instance variables set to

null. The example does not show any of the variables that actually refer to the node object. You

must show all variables and their references in your drawing. Use arrows to show references and a

forward slash to indicate variables that store null. Assume the node class is the doubly linked

node from the linked list assignment and that the fields of the class are all public.

 prev data next

DoubleListNode<Integer> n1

 = new DoubleListNode<>(null, new Integer(7), null);

DoubleListNode<Object> n2 = new DoubleListNode<>(null, null, n1);

n1.prev = n2;

n1.prev.next.next = n1;

n2.data = n1.prev.next;

n1 = n2;

 CS 314 – Exam 2 – Fall 2017 4

I. What is the worst case order (Big O) of the following method? N = list.size().

 list is a Java LinkedList _______________

public static double im(LinkedList<Double> list) {

 double result = 0;

 for (int i = 0; i < list.size() / 2; i++) {

 for (int j = list.size() / 2; j < list.size(); j++) {

 if (list.get(i) < list.get(j)) {

 result += list.get(j) * list.get(i);

 }

 }

 }

 return result;

}

J. What does the following postfix expression evaluate to? Single integer for answer.

 100 10 / 10 5 * 2 4 - * - _______________

K. The StackExam2 class implements a stack and uses a singly linked list like the one presented in

lecture as its internal storage container. The end of the list represents the top of the stack. The

following method takes 2 seconds to complete when there are 10, 000 elements in the stack. What is

the expected time for the method to complete when there are 40,000 elements in the stack?

public static int k(StackExam2 <Integer> st) {

 int total = 0;

 StackExam2 <Integer> t = new StackExam2<>();

 while (!st.isEmpty()) {

 total += st.top();

 t.push(st.pop());

 }

 while (!t.isEmpty())

 st.push(t.pop());

 return total;

}

L. It takes a method using the mergesort algorithm 10 seconds to complete when sorting an array with

1,000,000 items in random order. What is the expected time for the method to complete when sorting

an array with 4,000,000 items in random order?

M. It takes a method using the insertion sort algorithm 5 seconds to complete when sorting an array with

50,000 items in random order. What is the expected time for the method to complete when sorting an

array with 100,000 items in random order?

 CS 314 – Exam 2 – Fall 2017 5

N. What is output by the following code? The Queue314 class is the same as the one presented in lecture.

 __

Queue314<Integer> q = new Queue314<>();

for (int i = 2; i < 9; i++) {

 if (i % 2 == 0)

 q.enqueue(i);

 else {

 q.enqueue(q.front());

 q.dequeue();

 q.enqueue(q.front());

 }

}

while (!q.isEmpty()) {

 System.out.print(q.front() + " ");

 q.dequeue();

}

O. What is output by the following code? ______________________________

ArrayList<Integer> a1 = new ArrayList<>();

a1.add(12);

ArrayList<Rectangle> a2 = new ArrayList<>();

a2.add(new Rectangle(0, 0, 12, 12)); // x, y, width, height

methodO(a1, a1);

methodO(a1, a2);

public static void methodO(ArrayList a1, ArrayList a2) {

 Comparable c1 = (Comparable) a1.get(0);

 Comparable c2 = (Comparable) a2.get(0);

 System.out.print(c1.compareTo(c2));

}

P. In a complete binary tree with 10 nodes, _______________

 how many nodes are there with 2 children?

Q. The following values are added one at a time to an initially empty binary search tree using the

simple algorithm demonstrated in class. What is the results of a post order traversal of the

resulting tree?

17 -5 0 12 25 -5 37 -5 26 20

R. What is the height of the root node in the resulting tree from part Q? _______________

 CS 314 – Exam 2 – Fall 2017 6

S. The following method takes .001 seconds to complete when n = 100,000. What is the expected

time for the method to complete when n = 200,000. The BST class is the same as the one

presented in lecture. It using the simple add algorithm, but implements it iteratively instead of

recursively. The nextInt method is O(1).

public static BST<Integer> s(int n) {

 BST<Integer> result = new BST<>();

 Random r = new Random();

 for (int i = 0; i < n; i++) {

 int t = r.nextInt() % 5;

 result.add(t);

 }

 return result;

}

T. The following method takes 4 seconds to complete when data.length = 10,000. What is

the expected time for the method to complete when data.length = 20,000. In each case,

the elements in data are distinct (no repeats) and are initially in random order. The BST class is

the same as the one presented in lecture. It using the simple add algorithm, but implements it

iteratively instead of recursively.

public static BST<Integer> t(int[] data) {

 BST<Integer> result = new BST<>();

 Arrays.sort(data); // assume mergesort

 for (int x : data) {

 result.add(x);

 }

 return result;

}

 CS 314 – Exam 2 – Fall 2017 7

 CS 314 – Exam 2 – Fall 2017 8

2. Linked Lists I (20 points) - Complete the rangeIsEqual instance method for the

LinkedList314 class. The method determines if two linked lists have the same elements, in the same

order for a given range of indices.

 You may not use any other methods in the LinkedList314 class unless you implement

them yourself as a part of your solution.

 The LinkedList314 class uses singly linked nodes.

 The list has a reference to the first node in the chain of nodes and a size variable.

 When the list is empty, first is set to null.

 The lists do not store null values.

 If the list is not empty, the last node in the chain of nodes, has its next reference set to null.

 You may use the nested Node class and the equals method for Objects.

 You may not use any other Java classes or native arrays.

public class LinkedList314<E> {

 private Node<E> first; // refers to first node in chain of nodes.

 private int size; // number of nodes and elements in this list

 private static class Node<E> { // The nested Node class.

 private E data;

 private Node<E> next;

 }

}

Examples of calls to rangeIsEqual(LinkedList314<E> other, int start,

int stop). The range is specified by start inclusive to stop exclusive.

In these examples the lists contain Integer objects.

[5, 12, 7].rangeIsEqual([3, 12, 7, 37], 0, 2) -> false (5 != 3)

[5, 12, 7].rangeIsEqual([3, 12, 7, 37], 1, 2) -> true

[5, 12, 7].rangeIsEqual([3, 12, 7, 37], 1, 3) -> true

[5, 12, 7].rangeIsEqual([3, 12, 7, 37], 1, 4) -> false, index 3 not

valid for calling list

[5, 12, 7].rangeIsEqual([], 0, 1) -> false

[5, 5, 12, 5, 5].rangeIsEqual([4, 5, 12, 5], 1, 4) -> true

[5, 5, 12, 5, 5].rangeIsEqual([4, 5, 12, 5], 1, 5) -> false, index 4

not valid for explicit argument list

[5, 5, 12, 5, 5].rangeIsEqual([4, 5, 12, 5], 3, 4) -> true

Complete the following rangeIsEqual method for the LinkedList314 class.

 CS 314 – Exam 2 – Fall 2017 9

/* pre: other != null, 0 <= start, 0 < stop, start < stop

 post: per the question description. Neither list is altered. */

public boolean rangeIsEqual(LinkedList314<E> other, int start, int stop) {

 CS 314 – Exam 2 – Fall 2017 10

3. Linked Lists II (20 points) - Complete the removeRange instance method for the

LinkedList314 class. The method removes all the specified elements in the given range.

This question uses the same LinkedList314 class as question 2.

 You may not use any other methods in the LinkedList314 class unless you implement

them yourself as a part of your solution.

 You may not use any other Java classes or native arrays.

public class LinkedList314<E> {

 private Node<E> first; // Refers to first node in chain of nodes.

 private int size; // number of nodes and elements in this list

 // The nested Node class.

 private static class Node<E> {

 private E data;

 private Node<E> next;

 }

}

Examples of calls to removeRange(int start, int stop).

The range is specified by start inclusive to stop exclusive.

In these examples the lists contain Integer objects.

[5, 12, 7, 31, 42].removeRange(3, 3) -> [5, 12, 7, 31, 42]

[5, 12, 7, 31, 42].removeRange(5, 5) -> [5, 12, 7, 31, 42]

[5, 12, 7, 31, 42].removeRange(1, 3) -> [5, 31, 42]

[5, 12, 7, 31, 42].removeRange(0, 1) -> [12, 7, 31, 42]

[5, 12, 7, 31, 42].removeRange(0, 3) -> [31, 42]

[5, 12, 7, 31, 42].removeRange(4, 5) -> [5, 12, 7, 31]

[5, 12, 7, 31, 42].removeRange(0, 5) -> []

Complete the method on the next page.

 CS 314 – Exam 2 – Fall 2017 11

/* pre: 0 <= start <= size, 0 <= stop <= size, start <= stop

 post: Elements from start inclusive to stop exclusive removed,

 size updated correctly. */

public void removeRange(int start, int stop) {

 CS 314 – Exam 2 – Fall 2017 12

4. Trees (20 points) - Implement an instance method for a binary tree class that determines the number of

parent - child pairs in the tree whose stored values, when added together, equal a given target value.

public class BinaryTree {

 private BNode root; // root == null if tree is empty

 // nested BNode class

 private static class BNode {

 private int data;

 // left and right child are null if no child

 private BNode left;

 private BNode right;

 }

}

Consider the following tree, t. This is not a binary search tree.

t.parentChildPairsWhoseSumEquals(12) returns 3

t.parentChildPairsWhoseSumEquals(0) returns 1

t.parentChildPairsWhoseSumEquals(19) returns 1

t.parentChildPairsWhoseSumEquals(5) returns 0

t.parentChildPairsWhoseSumEquals(20) returns 0

t.parentChildPairsWhoseSumEquals(-12) returns 0

Do not create any new nodes or other data structures. You may use the BNode class, but do not use

any other methods or classes. You may add your own helper method.

 CS 314 – Exam 2 – Fall 2017 13

/* pre: none

 post: Per the problem description.

 This BinaryTree is not altered as a result of this method call.*/

public int parentChildPairsWhoseSumEquals(int tgt) {

 CS 314 – Exam 2 – Fall 2017 14

5. Recursive Backtracking (20 points) Write a method that determines if it possible to fill a given

number of shipping trucks to their weight capacity given a list of very heavy, very small items to ship.

Our goal is to fill each truck to its weight capacity. The total weight of the items to ship will always equal

or exceed the total capacity of our trucks. In many cases we will have left over items which is acceptable.

The goal is not to ship all the items, rather to see if we can maximize the shipping capacities of the trucks.

All of the items would fit into a single truck, but we are limited by the weight capacities of the trucks.

Each truck has a given weight capacity expressed as an integer. Each item to be shipped has a weight, also

an integer.

Our method will return true if we can fill each truck to its weight capacity via some combination of items,

false otherwise.

Consider the following examples:

1. We have 3 trucks with weight capacities of 3, 3, and 4.

The items available have weights of 1, 2, 2, 2, 2, 2, 4.

There is no way to fill each truck to capacity. We could put a 2 and 1 into the first truck with a weight

capacity of 3. We could put either the 4 or two 2's into truck number 3 with a weight capacity of 4. But

truck 2 cannot be filled to its weight capacity. We only have items with a weight of 2 left.

2. We have 4 trucks with weight capacities of 3, 4, 4, and 6.

The items available have weights of 1, 2, 2, 2, 2, 2, 2, 4, 4.

One valid set up is [(1, 2), (2, 2), (4), (4, 2)].

Each set of parenthesis represents the items in a truck.

Note, the examples show the truck capacities and items weight in sorted order, but do not assume this is true.

Complete a canShipHelp helper method that uses recursive backtracking and returns a true if there is

some combination of the given items or a subset of the given items so we can fill each truck to its weight

capacity, false otherwise.

Do not use any other Java class or methods in your answer except the array length field.

Here is the initial method
/* pre: trucks != null, trucks.length > 0, all elements of trucks > 0,

 items != null, all elements of items > 0,

 the sum of the elements in items >= the sum of the elements in

 trucks.

 post: neither trucks or items is altered by the completion of this

 method. Return a value as described in the question. */

public boolean canShip(int[] trucks, int[] items) {

Complete the arguments for canShipHelp and the canShipHelp method on the next page.

Do not add any code to the original canShip method.

 CS 314 – Exam 2 – Fall 2017 15

public boolean canShip(int[] trucks, int[] items) {

 return canShipHelp(

}

