
CS314 Midterm 1 - Spring 2013 - Suggested Solution and Criteria

CS314 Spring 2013 Midterm 1 Solution and Grading Criteria.

Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. violated restrictions or made bad assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces

 Bonus Question: 32 bits + 1 point

A. 4N2 + 4N + 4, +/- 1 on each coefficient

B. O(N2)

C. O(logN), base 2 okay

D. O(N2)

E. O(N2)

F. 20 seconds

G. O(N3)

H. O(N)

I. 0.0022 seconds

J. [A, B, CC, C] (missing commas or brackets okay, quotes not okay)

K. runtime error OR A C D and then a runtime error

L. 1. invalid (or syntax error or compile error)

 2. valid

M. 1. valid

 2. invalid (or syntax error or compile error)

N. 1. invalid (or syntax error or compile error)

 2. valid

O. Lab: Amiga

P. true Lab: dual

Q. false Room: off

R. Compile Error

S. null 3 (runtime error not okay)

T. 4 0

CS314 Midterm 1 - Spring 2013 - Suggested Solution and Criteria

2. Comments. Typical GenericList problem. Interesting with two GenricLists to deal with and keeping track of
the two different indices. (where pulling from, where adding to)

Common problems:

 Not creating a GenericList or creating an array of Es, but not assigning it to GenericList

 Treating GenericList like an array, list[index]

 not updating size of GenericList as adding

 errors in indices in the two arrays

 go all the way to the end of the values array in the calling object, adding elements from extra capcity
that are not part of the list

 calling methods or using classes not allowed (question did not allow anything besides given constructor
with initial size and native array)

 writing a public add method that doesn't resize correctly. (AIOBE possible)

Suggested Solution:

public GenericList<E> sublist(int start) {

 int newSize = size - start;

 GenericList<E> result = new GenericList<E>((newSize + 1)* 2);

 for(int i = start; i < this.size; i++) {

 result.values[i - start] = this.values[i];

 }

 result.size = newSize;

 return result;

}

General Grading Criteria: 13 points

 create new Generic List correctly, call correct constructor: 2 points, lost this if just create array

 new list has sufficient capacity: 1 point (lose this if multiple resizes, efficiency), not necessary to have
extra capacity

 Only add (size - start) elements to result: 2 points

 indices correct when adding [start, this.size) to [0, result.size) : 3 points [= inclusive,) = exclusive

 update size of result correctly: 2 points

 solution is O(N): 2 points

 return GenericList: 1 point (or stated method had void as return type), lose this if return array

Other common deductions:

 -3 if use result[i] instead of result.values[i] and result is a GenericList

 create public methods that don't work for clients (add methods that don't add), -2

 disallowed classes / methods -2 to -7 (in particular using ArrayList or calling add method was -7)

CS314 Midterm 1 - Spring 2013 - Suggested Solution and Criteria

3. Comments: Probably the easiest question on the test. Saw lots of 2 or 3 branch if statements. easier I think
to have the if, inside the nested loop.

Common problems:

 Not calling size method on the ArrayList vector

 treating ArrayList like an array

Suggested Solution:

public void multiplyByVector(ArrayList<Integer> vector) {

 if(vector.size() == coeffs.length

 || vector.size() == coeffs[0].length) {

 boolean matchesRows = vector.size() == coeffs.length;

 for(int r = 0; r < coeffs.length; r++)

 for(int c = 0; c < coeffs[0].length; c++)

 if(matchesRows)

 coeffs[r][c] *= vector.get(r);

 else

 coeffs[r][c] *= vector.get(c);

 }

}

Common alternate solution:

public void multiplyByVector(ArrayList<Integer> vector) {

 if(vector.size() == coeffs.length)

 for(int r = 0; r < coeffs.length; r++)

 for(int c = 0; c < coeffs[0].length; c++)

 coeffs[r][c] *= vector.get(r);

 else if(vector.size() == coeffs[0].length)

 for(int r = 0; r < coeffs.length; r++)

 for(int c = 0; c < coeffs[0].length; c++)

 coeffs[r][c] *= vector.get(c);

}

General Grading Criteria: 14 points

 determine if vectors aligns with row or column correctly: 3 points

 nested loop with correct bounds to access all elements: 3 points

 access elements from vector correctly (get method, size of list): 2

 scale element in 2d array by correct value from vector (multiply, correct index from vector): 2 points

 MathMatrix unchanged if vector not equal to number of rows or columns: 1 point

 O(N2), no new arrays created: 2 points

CS314 Midterm 1 - Spring 2013 - Suggested Solution and Criteria

4. Comments: A very interesting problem. The key was to verify the ArrayList ranks started with UNRANKED
and then to skip through the ranks until the first rank NOT equal to UNRANKE occurred. At that point, the
method can determine the answer. Lots of good, different solutions. It was okay to assume there was at least
one ranked decade. (Not all elements == UNRANKED). Okay to assume every NameRecord has at least one
decade that is ranked.

Common problems:

 Using 0 instead of the constant UNRANKED

 using the other constants instead of ranks.size() (No guarantee on number of ranks)

 Not stopping when first rank found. A LOT of solutions would return true on a name that was
UNRANKED 300 UNRANKED 200
if the cutoff was 250

 using a hard coded cutoff (250) instead of the parameter cutoff

 assuming 11 ranks

Suggested Solution:
public boolean trendy(int cutoff) {

 boolean result = ranks.get(0) == UNRANKED;

 if(result) {

 int index = 1;

 while(index < ranks.size() && ranks.get(index) == UNRANKED)

 index++;

 if(index < ranks.size())

 result = ranks.get(index) <= cutoff;

 }

 return result;

}

General Grading Criteria: 12 points

 determine if name record starts with one or more unranked decades correctly: 2 points

 use UNRANKED, not 0: 2 points

 find first ranked decade after unranked decades: 4 points

 check that first ranked decade is within cutoff: 2 points (-1 if < instead of <=)

 return result: 1 point

 use instance variable (ArrayList) correctly: 1 point

Other common deductions:

 Treating UNRANKED as a String -3

 Using BASE_YEAR or YEARS_PER_DECADE instead of ranks.size() (no need to use those constants on
this method)

 Assume 11 decades -2 (hard coded 11)

 using disallowed classes / methods -2 each

 using 250 (or other hard coded number) instead of cutoff -2

CS314 Midterm 1 - Spring 2013 - Suggested Solution and Criteria

5. Comments: I thought this was an interesting problem. (How many list questions can I ask.) The description tried to
emphasize the order of elements in the Bag could change. This meant when you find an instance the EASIEST thing to do
is to replace the reference of what you are removing with the LAST reference in the Bag (1 operation), not shift all the
elements down 1 (on average N/2) operations. Granted, this does not change the order, but the question specified to
have a small T(N). Starting from the end instead of the start does not guarantee an improvement. (It is just as likely the
first occurrence is in the first half of the list as it is in the second half.) noe = numberOfElements

Common problems:

 going to the length of the array instead of the numberOfElements (extra capcity possible)

 creating a new array which is inefficient in terms of time and space for this problem

 nulling out the removed element and not doing a swap. (Question specified the N elements of the Bag are
stored in the FIRST n elements of the array.)

 shifting elements instead of swapping last reference

 calling a non-existent remove method on an array, elements.remove(3). Elements is an array. The only methods
it has are those from Object.

 using == instead of .equals to check equality of objects

 removing ALL occurrences of the target object, not one

 not updating numberOfElements (noe)

 not nulling out last elements (possible memory leak because object should be garbage, but isn't)

 continue to loop even when an occurrence found

Suggested Solution:

public boolean removeSingleOccurrence(Object tgt) {

 for(int i = 0; i < numberOfElements; i++) {

 if(tgt.equals(elements[i]) {

 // found one!

 numberOfElements--;

 elements[i] = elements[numberOfElements];

 elements[numberOfElements] = null;

 return true;

 }

 }

 // never found tgt

 return false;

}

General Grading criteria: 11 points

 search to find tgt, correct number of elements 2 points (loop)

 use equals method, not ==. 2 points

 stop when find the first occurrence, 2 points

 swap reference of last with found, 2 points

 null old last reference, 1 point

 decrement numberOfElements if found, 1 point

 return correct result, 1 point

Other common deductions:

 remove method (-6), infinite loop (-3 to -6), go to length not numberOfElements (-2), create new array (-2),
remove all equal values not just 1 (-3)

