
CS314 Final - Spring 2014 - Suggested Solution and Criteria 1

CS314 Spring 2014 Final Solution and Grading Criteria.

Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces OR missing O()
If """ included in output -1 first occurrence then error carried forward.

A. 34

B. 10531!!2225
(extra spaces okay)

C. 13

D. O(2N)

(any base from 1.6 to 2 okay)

E. 12
 /

 5

 / \

 -5 8

 /

 7

F. -5 7 8 5 12

G. -5
 / \

 5 7

 / \ / \

 12 5 12 8

H. O(N)

I. O(NlogN) base 2 okay

J. O(N)

K. 1. 5 appears twice in tree
 2. one path with 3 black nodes and all
others have 2 black nodes

L. ArrayLists do not implement the
Comparable interface

M. -2 AA 5 C 9 AA

N. W X D X K C
(spaces or not okay)

O. 15

P. E

Q. O(N3)

R. 5 bits (just 5 okay)

S. equals method not overridden in Property

T. 4

CS314 Final - Spring 2014 - Suggested Solution and Criteria 2

2. Comments. Simple linked list question.

Suggested Solution:

public void insertAfterNth(E newValue, E target, int n) {

 int count = 0;

 Node<E> temp = first;

 while(temp != null && count < n) {

 if(temp.getData().equals(target))

 count++;

 if(count < n)

 temp = temp.getNext();

 }

 if(temp != null)

 temp.setNext(new Node<E>(newValue, temp.getNext()));

}

15 points , Criteria:

 temp node set to first, 1 point

 counter, 1 point

 loop that goes until correct number found or no more nodes, 3 (okay to return from middle of loop)

 check current item equal target, 2 (lose this if ==)

 increment count, 1

 move temp correctly and only if appropriate, 4 points

 add new node correctly just once, 3 points (lose this if add multiple times)

Other:

disallowed classes or methods: -3
Worse than O(N): -3
off by one error due to moving one past correct node, -2
doesn't stop after inserting, -2 EFFECIENCY
recursive solution, O(N) space, -3
using members instead of methods, -1
calling non existent methods, -2

CS314 Final - Spring 2014 - Suggested Solution and Criteria 3

3. Comments:

Common problems:

 using && instead of || on logic

 not handling empty case

 not handling case when target == 0 correctly (0 length path not allowed)

 assuming path must go all the way to a lead

 stopping too early. With negative or positive numbers possible in lower levels, it is a logic error to stop
if temporary sum is greater than target or target is less than 0.

Suggested Solutions:

public boolean pathFromRootExists(int target) {

 return helper(root, target);

}

private boolean helper(BinaryNode n, int target) {

 if(n == null)

 return false;

 else {

 target -= n.getData();

 if(target == 0)

 return true;

 else

 return helper(n.getLeft(), target)

 || helper(n.getRight(), target);

 }

 }

15 points , Criteria:

 create helper, 1

 base case, node is null, return false, 3

 if node not null, update target or sum, 3

 base case, target = 0 or sum equal to target, return true, 3

 recursive call with left and right, 3

 correct logic on recursive calls, OR not AND, 2

Other:
DISALLOWED METHODS -3 per
early return when target <= 0 or sum exceeds target -3
using an array, even of size 1, -1
assuming path must reach leaf, -3

CS314 Final - Spring 2014 - Suggested Solution and Criteria 4

4. Comments:

Common problems:

 Looping through the codes instead of reading from the file

 reading in more than 1 bit at a time

 writing the PEOF to the output file

 writing past the PEOF

 not calling containsKey or get correctly

Suggested Solution:

 public static void uncompress(Map<String, Integer> codes,

 BitInputStream in, BitOutputStream out) {

 String temp = "";

 boolean keepGoing = true;

 while(keepGoing) {

 temp += in.readBits(1); // String concat works with anything

 if(codes.containsKey(temp)) {

 int value = codes.get(temp);

 if(value != PSEUDO_EOF) {

 temp = "";

 out.writeBits(BITS_PER_WORD, value);

 }

 else

 keepGoing = false; // just read in PEOF

 }

 }

 out.close();

 in.close();

 }

15 points, Criteria:

 keep reading bits until PEOF, 3

 read 1 bit at a time, 4

 concat 0 or 1 as appropriate, 1

 check if code / key present, 2

 output value correctly, 2

 reset code, 2

 close, 1

Other deductions:

 write out PEOF to file, -2

 skips bits, -3

 write past the PEOF, -3

CS314 Final - Spring 2014 - Suggested Solution and Criteria 5

5. Comments: Classic recursive backtracking problem given the constraints

Common problems:

 returning early

 trying an N^2 iterative solution (only going out two links)

Suggested Solution:
private boolean connectedHelper(Vertex currentVertex, int[] numVisited) {

 if(numVisited[0] == vertices.size())

 return true;

 else if(currentVertex.scratch != 0)

 // been here before

 return false;

 else {

 // visit this vertex

 currentVertex.scratch = 1;

 numVisited[0]++;

 for(Edge e : currentVertex.adjacent) {

 if(connectedHelper(e.dest, numVisited))

 return true;

 }

 return false;

 }

}

15 points, Criteria:

 base case all visited, 3 points (efficiency?)

 base case, visited vertex before?, 3 points

 recursive case:

 mark vertex visited, 1 point

 increment num visited, 1 point

 loop through edges, 2 points

 recursive call and return if true, 3 points

 return false if no solution, 2 points

Common Deductions:

Early return -5

CS314 Final - Spring 2014 - Suggested Solution and Criteria 6

6. Comments: Not stated but based on assignment we know the min is in the left most node

Common problems:

 not handling empty case

 not altering root node when appropriate (when it is the min / left most node)

 not removing node with min from tree

 moving past node with min

Suggested Solution:

public E deqeue() {

 E result = null;

 if(root != null) {

 if(root.left == null) {

 result = root.data;

 root = root.right;

 }

 else {

 BSTNode<E> temp = root;

 while(temp.left.left != null) {

 temp = temp.left;

 }

 result = temp.left.data;

 temp.left = temp.left.right;

 }

 }

 return result;

}

15 points, Criteria:

 empty case, 2 points

 root case handled correctly, 3 points

 general case, temp at root, 1 point

 general case, move to left only, 2 points

 general case, move until just before left most node or use trailer, 3 points

 general case, remove node with min from tree correctly, 3 points

 return correct answer, 1 point

Common Deductions:

