
CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 1

CS314 Spring 2015 Final Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 32 seconds

B. 50,000 seconds (52,428.8 accepted but not required!)

C. 7 13 0 42

D. 15

E. sparse

F. 180 250

G. M 180 M 150

H. [10, 20][10, 20]

I. 7 2 -3 5 6 9

J. O(N)

K. O(N2)

L. O(N2)

M. -3 2 5 6

N. 45 seconds

O. 21 seconds

P. 4 (Black) Q. 10

 / \ / \

 2(red) 6(red) 6 8

 / \ /

 2 6 4

Q. (Heap shown above and to the right)

R. Less time to complete because HashSet add is O(1) while TreeSet add

is O(logN). (if order not specified -1)

S. 0 1 1 0 1 0 0 0

T. 120

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 2

2. Comments. A good linked list question. Similar to method from linked list assignment, but this was with a
singly linked list

Common problems:

 not handling case when list empty correctly

 not updating size instance variable

 poor efficiency

 not handling case when first must refer to different node (first node in range being removed)

Suggested Solution:

 public void removeRange(int start, int stop) {

 if(start < stop) {

 Node<E> tempBeforeStart = first;

 for(int i = 1; i < start; i++)

 tempBeforeStart = tempBeforeStart.getNext();

 Node<E> tempAtStop = tempBeforeStart;

 int numMovesForStop = stop - start;

 if(start != 0)

 numMovesForStop++;

 for(int i = 0; i < numMovesForStop; i++)

 tempAtStop = tempAtStop.getNext();

 if(start == 0)

 first = tempAtStop;

 else

 tempBeforeStart.setNext(tempAtStop);

 size -= (stop - start);

 }

 // else start == stop, nothing to do

 }

20 points , Criteria:

 do nothing when start == stop, 1 point

 get node before start position, must move correctly, 5 points

 get node at stop position, must move correctly, 5 points

 handle case when start is 0, removing first node, moving one less time, 3 points

 correctly change next reference of node before start position (general case), 3 points

 update size correctly, 3 points

Other deductions:

-2 not handling empty case correctly
-1 double traversal

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 3

3. Comments: A very interesting problem. Not much code required, but many students failed to check all the
nodes of each subtree. Solutions expected to be O(N2) given the restrictions.

Common problems:

 not using return values from methods

 not checking all elements in subtree for repeat of root of subtree (in a helper method)

 not handling empty tree correctly

 not checking roots of ALL subtrees

 solution immediately fails because root compared against itself

Suggested Solution:

 public boolean rootsNotInSubtrees() {

 return rootsNotInSubtree(root);

 }

 private boolean rootsNotInSubtree(BinaryNode<Integer> n) {

 if(n == null)

 return true;

 else

 return valueNotInSubtree(n.getData(), n.getLeft())

 && valueNotInSubtree(n.getData(), n.getRight())

 && rootsNotInSubtree(n.getLeft())

 && rootsNotInSubtree(n.getRight());

 }

 private boolean valueNotInSubtree(Integer data, BinaryNode<Integer> n)

{

 if(n == null)

 return true;

 else if(data == n.getData())

 return false;

 else

 return valueNotInSubtree(data, n.getLeft())

 && valueNotInSubtree(data, n.getRight());

 }

20 points , Criteria:

 kickoff recursion is given method, 1 point

 return correct answer, 1 point

 create method that checks roots of ALL subtrees and calls second helper to ensure root of subtree not

repeated in any descendant node of that subtree, 9 points (partial credit possible)

 create method that checks subtree to ensure a give value is not present, 9 points

other:

not using get methods: -1

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 4

4A. Comments: Solution was VERY simply even though it was used recursive backtracking

Common problems:

 not accessing current.adjacent correctly

 private void addConnectedVertices(Set<Vertex> verts, Vertex current) {

 if(!verts.contains(current)) {

 verts.add(current);

 for(Edge e : current.adjacent)

 addConnectedVertices(verts, e.dest);

 }

 }

10 points, Criteria:

 base case, when vertex already present, do nothing, 2 points

 if vertex not present, added to set, 2 points

 loop through edges, 3 points

 make recursive call with destination of edge correctly, 3 points

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 5

4B. Comments: Again, fairly simple problem. The real difficulty was understanding the abstraction of the graph, but if
you completed the graph assignment, that was easy.

Common problems:

 assuming scratch variables in vertices set to a given value at the start. Okay to use scratch, but had to write code
to ensure scratch was set to desired value

 Creating multiple sets. Restriction was to create a single set.

 Many students had a logic error where the method simply counted the number of vertices.

 public int getNumSubGraphs() {

 Set<Vertex> verts = new HashSet<Vertex>();

 int numSubgraphs = 0;

 for(Vertex v : vertices.values()) {

 if(!verts.contains(v)) {

 numSubgraphs++;

 addConnectedVertices(verts, v);

 }

 }

 assert (verts.size() == vertices.size()); // NN

 return numSubgraphs;

 }

10 points, Criteria:

 create single HashSet, 1 point

 correctly count number of subgraphs with local variable, 2 points

 loop through all keys or values, 2 points

 correct check for vertex not in set, incrementing number of subgraphs, and making call to recursive helper,
4 points

 return correct value, 1 point

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 6

5. Comments: A good problem dealing with a new data structure. Should have been easy if you came to class the dat we
covered heaps.

Common problems:

 not stopping on correct element (deepest in tree)

 not stopping bubble up of new element when it is the root. (A lot of off by one errors as well)

 not starting from the back of the heap to try and find the deepest the fastest

 changing multiple instances of elements instead of just the deepest.

Suggested Solution:

public void decreaseKey(int elements, int amount) {

 int pos = size;

 while(pos > 0 && con[pos] != elements)

 pos--;

 if(pos != 0) {

 con[pos] -= amount;

 int newValue = con[pos];

 while(pos > 1 && newValue < con[pos / 2]) {

 con[pos] = con[pos / 2];

 pos /= 2;

 }

 con[pos] = newValue;

 }

 }

20 points, Criteria:
 find correct key to alter, 6 points

 efficiency of finding key, 2 points

 alter key correctly, 2 points

 move key up as necessary, 4 points

 stopping condition for root of heap correct, 3 points (-2 for oboe)

 stopping condition for parent less than or equal to new value correct, 3 points

