
CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 1

CS314 Spring 2016 Exam 1 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 5N + 6, + 1 on each coefficient and the constant

B. O(N)

C. O(N2)

D. O(N3)

E. O(N)

F. O(N2logN) // base 3 okay

G. O(N2)

H. 20 seconds

I. 6000 items

J. 92 seconds

K. [J, C, K, X, K] // quotes = -1, differences in brackets, commas ok

L. [BA, 12, 1.5, []] // differences in brackets, commas ok

M. {A=3, G=9, M=-1, X=5}

N. faster

O. -5 0 [-5, 3, 4, 0] // differences in brackets, commas ok

P. runtime error or exception // just error is -1

Q. 1. valid, 2. invalid

R. 1. valid, 2. invalid

S. buzz 100

T. compile error or syntax error // just error is -1

U. tone

V. Phone: 25 OR compile error or syntax error. (Turns out correct answer

was compile error as original class reference had LandLine and code

referred to Landline.) either accepted

W. 100 2

X. runtime error or exception // just error is -1

Y. default default buzz chime

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 2

2. Comments. A fairly straight-forward problem. The only algorithmic difficulty was keeping the three different
indices in this.container, other.container, and result.container separate and correct. A lot of students used
method that were not allowed. The question said no other methods from GenericList could be used unless you
implemented them yourself as a part of your answer.

Common problems:

 use methods not allowed by method such as add

 confusing other and other.container. For example other[index] instead of
other.container[index]

 not updating size of result

 altering one of the two calling objects

 confusing indices in this, other and/or result
Suggested Solution:

public GenericList<E> getDualSublist(GenericList<E> other,

 int start, int stop) {

 final int NEW_SIZE = this.size + other.size();

 GenericList<E> result = new GenericList<E>(NEW_SIZE + 10);

 final int NUM_ELEMENTS = stop - start;

 for (int i = 0; i < NUM_ELEMENTS; i++) {

 result.container[i] = this.container[start + i];

 }

 for (int i = 0; i < NUM_ELEMENTS; i++) {

 result.container[i + NUM_ELEMENTS] = other.container[start + i];

 }

 result.size = NUM_ELEMENTS * 2;

 return result;

}

20 points , Criteria:

 create resulting GenericList with adequate capacity. 3 points (okay if no extra capacity)

 add elements from calling list (this to result)

o loop with correct bounds, 1 point

o access correct elements from this, 3 points

o place in correct indices in result, 2 points

 add elements from other list (other to result)

o loop with correct bounds, 1 point

o access correct elements from other, 2 points

o place in correct indices in result, 3 points

 correctly set size of resulting list, 3 points

 return correct GenericList, 2 points

Usage errors:

any list[index] instead of list.container[index] -5

disallowed methods (unless implemented): get -3, add -5, size -3 , resize - 5

alter parameters: -5

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 3

3. Comments: Just a 2d array problem. Not a lot of encapsulation going on evening though we are writing an instance
method for the MathMatrix class. The key was to realize there had to be exactly one non-zero value per row and one
non-zero value per column to be possible strictly diagonal.

Common problems:

 just checking one non zero per column

 not checking exactly one non zero per row and column. A LOT of solutions would return true with a MathMatrix
of all zeros because that simply checked the count was less than 0.

 not stopping when answer known

public boolean possibleDiagonal () {

 // square matrix so we can use same nested loop to traverse row and column.

 // Must have exactly one non zero value per row and per column to be

 // possible strictly diagonal.

 for (int i = 0; i < coeffs.length; i++) {

 int rowCount = 0;

 int colCount = 0;

 for (int j = 0; j < coeffs.length; j++) {

 if (coeffs[i][j] != 0)

 rowCount++;

 if (coeffs[j][i] != 0)

 colCount++;

 }

 if (rowCount != 1 || colCount != 1)

 return false;

 }

 return true;

}

20 points, Criteria:

 access instance variables correctly: 1 point

 determine exactly one non-zero value per row: 7 points

 determine exactly non-zero value per row: 7 points

 stop early if answer known to be false, 4 points

 return correct answer, 1 point

Other deductions:

 Only checks less than 1 0 per row / column -5

 Only check columns -7

 O(N3) solution: -5

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 4

4. Comments: A good problem. Lots of abstraction and encapsulation going on.
Common problems:

 not resizing the array if necessary. By far this was the biggest mistake

 Not stopping as soon as correct pair found in container

 checking ALL elements of container (container.length) instead of the number of distinct items in the Bag
Suggested Solution:
 public void add(Object value) {

 sizeOfBag++;

 boolean found = false;

 int index = 0;

 while (!found && index < distinctItemsInBag) {

 Pair currentPair = container[index];

 if (value.equals(currentPair.getObject())) {

 // found match

 int newFreq = 1 + currentPair.getFrequency();

 currentPair.setFrequency(newFreq);

 found = true;

 }

 index++;

 }

 if (!found) {

 // first occurrence of value in this Bag

 if (distinctItemsInBag == container.length) {

 resize();

 }

 container[distinctItemsInBag] = new Pair(value, 1);

 distinctItemsInBag++;

 }

 }

 private void resize() {

 Pair[] temp = new Pair[container.length * 2 + 1];

 for (int i = 0; i < container.length; i++) {

 temp[i] = container[i];

 }

 container = temp;

 }

25 points, Criteria:

 increment size of bag, 2 points

 search for item already present

o loop that only checks valid items, 4 points

o check item present correctly, equals not ==, 3 points

o stop when found, 3 points

o increment frequency correctly if found, 2 points

 if not already present

o check capacity and resize if necessary, 5 points (resize must be correct)

o add new Pair with frequency of 1 at correct spot in array, 3 points

o increment distinct items in bag, 3 points

Other: using methods not present: -5 per, efficiency T(N): -2,

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 5

For questions Q - Y, consider the following classes and interface:
public class Phone {

 private int cost;

 public Phone() {cost = 100;}

 public Phone(int c) {cost = c;}

 public int getCost() {return cost;}

 public String toString() {return "Phone: " + getCost();}

 public String sound() {return "default";}

}

public class Landline extends Phone {

 public String sound() {return "ring";}

 public int getCost() {return 25;}

}

public interface AppStore {

 public int numApps();

}

public class Smart extends Phone implements AppStore {

 public Smart(int cost) {super(cost);}

 public int numApps() {return 1000;}

}

public class Android extends Smart {

 public Android() {super(200);}

 public String sound() {return "tone";}

}

public class Apple extends Smart {

 public Apple() {super(500);}

 public String sound() {return "chime";}

 public int numApps() {return 500;}

 public int getCost() {return 500;}

}

public class Feature extends Phone {

 public String sound() {return "buzz";}

}

