
CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 1

CS314 Spring 2016 Exam 1 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 5N + 6, + 1 on each coefficient and the constant

B. O(N)

C. O(N2)

D. O(N3)

E. O(N)

F. O(N2logN) // base 3 okay

G. O(N2)

H. 20 seconds

I. 6000 items

J. 92 seconds

K. [J, C, K, X, K] // quotes = -1, differences in brackets, commas ok

L. [BA, 12, 1.5, []] // differences in brackets, commas ok

M. {A=3, G=9, M=-1, X=5}

N. faster

O. -5 0 [-5, 3, 4, 0] // differences in brackets, commas ok

P. runtime error or exception // just error is -1

Q. 1. valid, 2. invalid

R. 1. valid, 2. invalid

S. buzz 100

T. compile error or syntax error // just error is -1

U. tone

V. Phone: 25 OR compile error or syntax error. (Turns out correct answer

was compile error as original class reference had LandLine and code

referred to Landline.) either accepted

W. 100 2

X. runtime error or exception // just error is -1

Y. default default buzz chime

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 2

2. Comments. A fairly straight-forward problem. The only algorithmic difficulty was keeping the three different
indices in this.container, other.container, and result.container separate and correct. A lot of students used
method that were not allowed. The question said no other methods from GenericList could be used unless you
implemented them yourself as a part of your answer.

Common problems:

 use methods not allowed by method such as add

 confusing other and other.container. For example other[index] instead of
other.container[index]

 not updating size of result

 altering one of the two calling objects

 confusing indices in this, other and/or result
Suggested Solution:

public GenericList<E> getDualSublist(GenericList<E> other,

 int start, int stop) {

 final int NEW_SIZE = this.size + other.size();

 GenericList<E> result = new GenericList<E>(NEW_SIZE + 10);

 final int NUM_ELEMENTS = stop - start;

 for (int i = 0; i < NUM_ELEMENTS; i++) {

 result.container[i] = this.container[start + i];

 }

 for (int i = 0; i < NUM_ELEMENTS; i++) {

 result.container[i + NUM_ELEMENTS] = other.container[start + i];

 }

 result.size = NUM_ELEMENTS * 2;

 return result;

}

20 points , Criteria:

 create resulting GenericList with adequate capacity. 3 points (okay if no extra capacity)

 add elements from calling list (this to result)

o loop with correct bounds, 1 point

o access correct elements from this, 3 points

o place in correct indices in result, 2 points

 add elements from other list (other to result)

o loop with correct bounds, 1 point

o access correct elements from other, 2 points

o place in correct indices in result, 3 points

 correctly set size of resulting list, 3 points

 return correct GenericList, 2 points

Usage errors:

any list[index] instead of list.container[index] -5

disallowed methods (unless implemented): get -3, add -5, size -3 , resize - 5

alter parameters: -5

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 3

3. Comments: Just a 2d array problem. Not a lot of encapsulation going on evening though we are writing an instance
method for the MathMatrix class. The key was to realize there had to be exactly one non-zero value per row and one
non-zero value per column to be possible strictly diagonal.

Common problems:

 just checking one non zero per column

 not checking exactly one non zero per row and column. A LOT of solutions would return true with a MathMatrix
of all zeros because that simply checked the count was less than 0.

 not stopping when answer known

public boolean possibleDiagonal () {

 // square matrix so we can use same nested loop to traverse row and column.

 // Must have exactly one non zero value per row and per column to be

 // possible strictly diagonal.

 for (int i = 0; i < coeffs.length; i++) {

 int rowCount = 0;

 int colCount = 0;

 for (int j = 0; j < coeffs.length; j++) {

 if (coeffs[i][j] != 0)

 rowCount++;

 if (coeffs[j][i] != 0)

 colCount++;

 }

 if (rowCount != 1 || colCount != 1)

 return false;

 }

 return true;

}

20 points, Criteria:

 access instance variables correctly: 1 point

 determine exactly one non-zero value per row: 7 points

 determine exactly non-zero value per row: 7 points

 stop early if answer known to be false, 4 points

 return correct answer, 1 point

Other deductions:

 Only checks less than 1 0 per row / column -5

 Only check columns -7

 O(N3) solution: -5

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 4

4. Comments: A good problem. Lots of abstraction and encapsulation going on.
Common problems:

 not resizing the array if necessary. By far this was the biggest mistake

 Not stopping as soon as correct pair found in container

 checking ALL elements of container (container.length) instead of the number of distinct items in the Bag
Suggested Solution:
 public void add(Object value) {

 sizeOfBag++;

 boolean found = false;

 int index = 0;

 while (!found && index < distinctItemsInBag) {

 Pair currentPair = container[index];

 if (value.equals(currentPair.getObject())) {

 // found match

 int newFreq = 1 + currentPair.getFrequency();

 currentPair.setFrequency(newFreq);

 found = true;

 }

 index++;

 }

 if (!found) {

 // first occurrence of value in this Bag

 if (distinctItemsInBag == container.length) {

 resize();

 }

 container[distinctItemsInBag] = new Pair(value, 1);

 distinctItemsInBag++;

 }

 }

 private void resize() {

 Pair[] temp = new Pair[container.length * 2 + 1];

 for (int i = 0; i < container.length; i++) {

 temp[i] = container[i];

 }

 container = temp;

 }

25 points, Criteria:

 increment size of bag, 2 points

 search for item already present

o loop that only checks valid items, 4 points

o check item present correctly, equals not ==, 3 points

o stop when found, 3 points

o increment frequency correctly if found, 2 points

 if not already present

o check capacity and resize if necessary, 5 points (resize must be correct)

o add new Pair with frequency of 1 at correct spot in array, 3 points

o increment distinct items in bag, 3 points

Other: using methods not present: -5 per, efficiency T(N): -2,

CS314 Exam 1 - Spring 2016 - Suggested Solution and Criteria 5

For questions Q - Y, consider the following classes and interface:
public class Phone {

 private int cost;

 public Phone() {cost = 100;}

 public Phone(int c) {cost = c;}

 public int getCost() {return cost;}

 public String toString() {return "Phone: " + getCost();}

 public String sound() {return "default";}

}

public class Landline extends Phone {

 public String sound() {return "ring";}

 public int getCost() {return 25;}

}

public interface AppStore {

 public int numApps();

}

public class Smart extends Phone implements AppStore {

 public Smart(int cost) {super(cost);}

 public int numApps() {return 1000;}

}

public class Android extends Smart {

 public Android() {super(200);}

 public String sound() {return "tone";}

}

public class Apple extends Smart {

 public Apple() {super(500);}

 public String sound() {return "chime";}

 public int numApps() {return 500;}

 public int getCost() {return 500;}

}

public class Feature extends Phone {

 public String sound() {return "buzz";}

}

