
CS314 Exam 1 - Fall 2016 - Suggested Solution and Criteria 1

CS314 fall 2016 Exam 2 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 36

B. 6 5 =4= 3 2 (differences in spaces okay)

C. 23

D. -516-8-4-2-1 (ignore dashes)

E. O(N2)

F. O(N2)

G. 15 10 6 (on different or same line)

H. 6

I. 40 minutes

J. 42 seconds

K. 15 7 3

L. .88 seconds

M. two of:

- has one or more abstract methods

- implements an interface but doesn't implement all methods of interface

- inherits from an abstract class with abstract methods and doesn't implement those methods

N. beginning of list should be top of stack

O. .01 seconds (makeTree is O(N) in this case, adding N duplicates)

P. 3

Q. 5 0 7 4 8 9 2

R. 0 4 7 8 5 9 2

S. 4 8 7 0 2 9 5

T. 24
 / \

 0 30

 \ /

 10 29

 \

 15

 / \

 13 19

CS314 Exam 1 - Fall 2016 - Suggested Solution and Criteria 2

2. Comments. A simple linked list question. Students did quite well on this question

Common problems:

 using disallowed methods. equals was the only method that could be used

 not using compareTo correctly

 assuming compareTo returns only -1, 0, or 1

public void replaceSmaller(LinkedList314<E> otherList) {

 Node<E> t1 = first;

 Node<E> t2 = otherList.first;

 while(t1 != null && t2 != null) {

 if (t1.data.compareTo(t2.data) < 0) {

 t1.data = t2.data;

 }

 t1 = t1.next;

 t2 = t2.next;

 }

}

16 points , Criteria:

 temp nodes for each list, 1 point

 while loop correct, 5 points

 check and replace smaller element in this correctly, 4 points

 traverse through nodes in list correctly, 6 points

Usage errors:

using disallowed methods, -6

adds public method to get first, -5

off by one errors, - 3

CS314 Exam 1 - Fall 2016 - Suggested Solution and Criteria 3

3. Comments: A more difficult LinkedList question. Lots of special cases to worry about.

Common problems:

 if number to remove is 0, there is nothing to do. Don't waste time moving through the linked list if number is 0

 not handling the case when start is 0 and first must be updated

 off by one errors when removing nodes

 not guarding against number being larger than the number of nodes we can actually remove

 using disallowed methods

 moving to node at position start instead of start - 1. The node at position start is to be removed.

public int removeNum(int start, int number) {

 int count = 0;

 if (number > 0) {

 // actually have to remove some nodes

 if (start == 0) {

 // handle case when must update first

 while (first != null && count < number) {

 first = first.next;

 count++;

 }

 } else {

 // general case, must get to start node

 Node<E> temp = first;

 for (int i = 1; i < start; i++)

 temp = temp.next;

 // temp now on node at position start - 1;

 while (temp.next != null && count < number) {

 temp.next = temp.next.next;

 count++;

 }

 }

 return count;

16 points, Criteria:

 efficiency, do nothing if number == 0, 2 points

 handle case when start = 0 and first must be updated, 3 points

 got to correct node in list (the one before start), 4 points

 remove correct nodes, 5 points

 calculate number of node removed, 1 point

 return correct result, 1 point

Other deductions:

CS314 Exam 1 - Fall 2016 - Suggested Solution and Criteria 4

4. Comments: An interesting Stack problem. Allowing use of Stack or Queue made it harder. In order to solve the
problem correctly it is necessary to use a Stack, not a Queue. Part of the question was realizing this. There is also a
special case when the Stack is empty and we cannot remove any elements.

Common problems:

 popping or topping an empty stack

 using a queue

 comparing to the original top element only instead of the element above. So for example some people simply
stored the top element and compared to that. So top [12, 5, 8] bottom. The 8 must be removed because it is not
less than or equal to 5. Comparing it to 12, the original top, is a logic error.

Suggested Solution:
public void makeDescending(Stack314<Integer> st) {

 if (!st.isEmpty()) {

 Stack314<Integer> temp = new Stack314<Integer>();

 temp.push(st.pop()); // we know not empty

 while (!st.isEmpty()) {

 int x = st.pop();

 if (x <= temp.top()) {

 temp.push(x);

 }

 }

 while (!temp.isEmpty()) {

 st.push(temp.pop());

 }

 }

}

16 points, Criteria:

 handle empty case correctly, 4 points (lose if possible to top or pop empty stack)

 process elements in st with while loop, 2 points

 check if element to be added to temp correctly and push, 3 points

 restore elements from temp to st, 3 points

 element in correct order, uses stack, 4 points

Others:

CS314 Exam 1 - Fall 2016 - Suggested Solution and Criteria 5

5. Comments: A simple tree problem

Common problems:

 when a node met the criteria NOT exploring its left child

 not handling empty tree case

 using while loops instead of recursion. (not possible without aux data structures)

 not using equals method to check data

 not checking all three conditions for counting node met

 trying to use a parameter to track the count. Recall, value parameters. If we make a copy and increment that it
does not alter the original argument.

 Not passing the value to check as a parameter.

Suggested Solution:

public int numNodesWithValueAndLeftChildOnly(E value) {

 return help(root, value);

}

private int help(BNode<E> n, E value) {

 if (n == null) {

 // dead end, nothing to see here

 return 0;

 else if (n.left != null && n.right == null && value.equals(n.data) {

 // We have a winner! Count this one and check left child.

 // No need to check right, because it is null

 return 1 + help(n.left, value);

 } else {

 // Whelp, this node didn't meet the criteria, just check children

 return help(n.left, value) + help(n.right, value);

 }

}

16 points, Criteria:

 create helper method with proper parameters, 3 points

 handle base case of empty tree / n == null, 4 points

 check if current node meets criteria correctly and return correct result, 4 points

 recursive calls correct in all cases, 4 points

 return correct, int result, 1 point

Other:
not handling empty tree case / NPE possible, -3
not using .equals -3
major logic error with while loops, -12

CS314 Exam 1 - Fall 2016 - Suggested Solution and Criteria 6

6. Comments: Not the hardest recursive backtracking question in the world, especially as the magic board class finds all
the valid moves for you. It was acceptable to alter the permanently, not undo the correct moves. No helper method was
necessary.

Common problems:

 base case of 0 marbles on the board. This is not possible unless the board starts with 0 marbles. A solution is one
marble is left on the board. It is not possible to go from a board with 1 marble to one with 0.

 Only using the moves from the first board configuration.

 Trying to track the index to start at for the moves. The moves for each board will be different and so we must
start at 0 for each array of moves

 not undoing the move if a solution no reached.

 returning early instead of only returning if result is true

 not returning true as soon as we get that value. If we have solved the puzzle lets not waste any more time. We
are done. Pop, pop, pop the champagne corks.

Suggested Solution:
public boolean canBeSolved(Board board) {

 if (board.numMarblesOnBoard() == 1) {

 return true; // HOORAY!!!

 }

 Move[] moves = board.getMoves();

 // current choices are the moves for this board

 for (int i = 0; i < moves.length; i++) {

 Move m = moves[i];

 // make current move

 board.removeMarble(m.sourceRow(), m.sourceCol());

 board.removeMarble(m.removedRow(), m.removedCol());

 board.placeMarble(m.destRow(), m.destCol());

 if (canBeSolved(board)) {

 // done!!!

 return true;

 }

 // that didn't work out, undo it so we can try the next one

 board.placeMarble(m.sourceRow(), m.sourceCol());

 board.placeMarble(m.removedRow(), m.removedCol());

 board.removeMarble(m.destRow(), m.destCol());

 }

 // never found a solution with these choices.

 return false;

}

}

16 points, Criteria:

 correct base case, 4 points

 loop through correct choices, 2 points

 move marbles correctly, 1 point

 make correct recursive call, 4 points

 return true if solved with this move, 3 points

 return false if no moves worked out, 2 points

