
1

Topic 1
CS314 Course Introduction

Chapman: I didn't expect a kind of Spanish Inquisition.
Cardinal Ximinez: NOBODY expects the Spanish Inquisition!
Our chief weapon is surprise...surprise and fear...fear and
surprise.... Our two weapons are fear and surprise...and
ruthless efficiency.... Our three weapons are fear, surprise,
and ruthless efficiency...and an almost fanatical devotion to the
Pope.... Our four...no... Amongst our weapons.... Amongst
our weaponry...are such diverse elements as fear, surprise....

In class: please close laptops
and put away mobile devices.

Mike Scott, Gates 6.304
scottm@cs.utexas.edu
www.cs.utexas.edu/~scottm/cs314/ CS314 Course Overview 2

Who Am I?

Professor of Instruction (lecturer)
in CS department since 2000

Undergrad Stanford, MSCS RPI

US Navy for 8 years, submarines

2 years Round Rock High School
prior to coming to UT

CS314 Course Overview 3

Purpose of these Slides
Discuss

course content

procedures

tools

For your TO DO list:
complete items on the startup page

www.cs.utexas.edu/~scottm/cs314/handouts/startup.htm

Course Goals

Analyze algorithms and code for efficiency

Be able to create and use canonical data
structures: lists (array and linked), stacks, queues,
trees, binary search trees, balanced binary search
trees, maps, sets, graphs, hash tables, heaps, tries

Know and use the following programming tools and
techniques: object oriented programming
(encapsulation, inheritance, polymorphism), Java
Interfaces, iterators, sorting, searching, recursion,
dynamic programming, functional programming

CS314 Course Overview 4

Course Goals
After CS314 you can design and implement

of code split between multiple classes) to
solve interesting problems

Recall, the three core areas of the UTCS
undergrad degree:
Programming, Theory, Systems

After this class your instructors shall expect
you can write complex programs given a
specification or problem statement.

You have to design the algorithm in many cases.
CS314 Course Overview 5 Course Overview 6

Prerequisites
Formal: CS312 with a grade of C- or higher

Informal: Ability to design and implement
programs in Java using the following:

variables and data types
expressions, order of

operations
Conditionals (if statements)

including boolean logic and
boolean expressions

iteration (loops)
Methods (functions,

procedures)
Parameters
structures or records or

objects

arrays (vectors, lists)
top down design (breaking big

rocks into little rocks)
algorithm and data design
create and implement program of

at least 200 - 300 loc

could you write a program to let
two people play connect 4?

CS314 Topics
1. Introduction

2. Algorithm Analysis

3. Encapsulation

4. Inheritance

5. Polymorphism

6. Generics

7. Interfaces

8. Iterators

9. Abstract Classes

10. Maps, Sets

11. Linked Lists

12. Recursion

13. Recursive
Backtracking

14. Searching, Simple Sorts

15. Stacks

16. Queues

17. Fast Sorting

18. Trees

19. Binary Search Trees

20. Graphs

21. Hash tables

22. Red-Black Trees

23. Huffman Code Trees

24. Heaps

25. Tries

26. Dynamic Programming

27. Functional Programming

Data Structures
simple definition:

variables that store other
variables

We will learn a
toolbox full of

use new ones.
CS314 Course Overview 8

Clicker Question 1

Which of the following is a data structure?

A. a method

B. a try / catch block

C. a double

D. an array

E. more than one of A - D

CS314 Course Overview 9

Resources
Class web site
most course material

Class discussion
group Ed

Canvas -> Grades,
Program
Submissions
(GradeScope),
Access Zoom Links,
Recorded Lectures,
Help Videos

Monday ->

Wednesday ->

Books

CS314 Course Overview 11Course Overview 11

books are recommended, not required
free alternatives on the web, see schedule

BJP (CS312 book) strongly recommended
Thinking Recursively in Java - recursion

CS314 Course Overview 12

Clicker Question 2

Which of these best describes you?

A. First year at UT and first year college student

B. First year at UT, transferring from another college
or university

C. Second year at UT

D. Third year at UT

E. Other

Course Grades
Exams 90% of grade, Non Exam Assessments 10% of grade
Non Exam Components. Capped at 220 points,
40 points of "slack". 0 excuses for non exam assessments

Syllabus Quiz, 10 points
Extra credit: Background survey 10 points
Academic Integrity Quiz, 10 points (100% or 0, multiple attempts)
Programming projects, 11 projects, 20 points each,
220 points total
Course Instructor Evals 10 points

Exams 90% of grade: Outside of class
Exam 1, Wednesday 9/25, 6:45 9:15 pm, 100 points
Exam 2, Wednesday, 10/30, 6:45 - 9:15 pm, 100 points
Exam 3, TBD, could be as late as 12/16, 100 points

Section problems. +0.15 for each completed, 8 total
Final Score = (exam 1 + exam 2 + exam 3) * 0.3

+ min(230, sum of non exam points) / 23 + SPs * 0.15
14

Grades and Performance
Final grade determined by final point total and a
90 80 70 60 scale

plusses and minuses if within 2.5 of cutoff:

A: [92.5 100] A-: [90 92.5) B+: [87.5 90)
B: [82.5 - 87.5), B-: [80.0 - 82.5), and so forth

Note the ")" indicates exclusive

No further rounding. 89.9999 -> B+

My CS314 Historical Grades

82% C- or higher:
28% A's, 34% B's,

8% D or F

10% Q or W (drop)
WORK LOAD EVALUATED AS HIGH (but not
EXCESSIVE) ON COURSE SURVEYS

Programming Assignments
Individual do your own work (no copying
or use of LLMs / generative AIs)

Programs checked automatically with
plagiarism detection software (MOSS)

Turn in the right thing - correct name, correct
format or you will lose points / slip days

Graded on Correctness AND program hygiene
"Code is read more often than it is written."
- Guido Van Rossum, Creator of Python

Slip days: 8 for term, max 2 per assignment,

16

Succeeding in the Course
Randy Pausch,
CS Professor at CMU said:

"When I got tenure a year
early at Virginia, other
Assistant Professors would come up to me and say, 'You
got tenure early!?!?! What's your secret?!?!?' and I
would tell them, 'Call me in my office at 10pm on Friday
night and I'll tell you.' "

shortcut is the long way, which is basically two words:
work hard

Succeeding in the Course - Meta

Ask questions!!!

lecture, section, Ed Discussion,
help hours, co-study

Mistakes are okay.

That is how we learn.
Trying to be perfect means not taking risks.

no risks, no learning

Make friends.

Study with them!
CS312 17

How to Get Help

Ed Discussion Post

Help Hours

Class examples

Examples from book

Discuss with other students at a high level

18

19

Succeeding in the Course - Concrete
Former student:

"I really like the boot camp nature of
your course."

do the readings
start on assignments early
get help from the teaching staff when you get stuck on an
assignment
attend lecture and discussion sections
go to the extra study sessions, co-study
participate on the class discussion group
do extra problems - http://tinyurl.com/pnzp28f
study for tests using the old tests
study for tests in groups
ask questions and get help CS314 Course Overview 20

Software
Java - Oracle or OpenJDK, limit ourselves to Java 8

IDE such as IntelliJ or Eclipse

Zoom, used occasionally

SSH into CS machines to test your programs
CS department account

SSH keys

Ability to transfer files and login remotely
(WinSCP, Putty, Cyberduck, Filezilla

CS314 Course Overview 21

Clicker Question 3

Which computer programming language are
you most comfortable with?

A. Java

B. C or C++

C. Python

D. Javascript

E. Other

See: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
and http://lang-index.sourceforge.net/

Topic Number 2
Efficiency Complexity -

Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning
(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,
often with the result that the code
becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

Clicker Question 1

between 2 and 1,000,000,000 from scratch
in 0.37 seconds."

Is this a fast solution?

A. no

B. yes

C. it depends

CS 314 Efficiency - Complexity 2

Efficiency

They also analyze them.

How efficient is a program?
How much time does it take program to complete?

How much memory does a program use?

How do these change as the amount
of data changes?

What is the difference between the average case
and worst case efficiency if any?

CS 314 Efficiency - Complexity 3

Technique
Informal approach for this class

more formal techniques in theory classes, CS331

How many computations will this program
(method, algorithm) perform to get the answer?

Many simplifications
view algorithms as Java programs

determine by analysis the total number
executable statements (computations) in
program or method as a function of the amount
of data

focus on the dominant term in the function

T(N) = 17N3 + 25N2 + 35N + 251 IS ORDER N3

Counting Statements
int x; // one statement

x = 12; // one statement

int y = z * x + 3 % 5 * x / i; // 1

x++; // one statement

boolean p = x < y && y % 2 == 0 ||
z >= y * x; // 1

int[] data = new int[100]; // 100

data[50] = x * x + y * y; // 1

CS 314 Efficiency - Complexity 5 CS 314 Efficiency - Complexity 6

Clicker 2
What is output by the following code?
int total = 0;
for (int i = 0; i < 13; i++)

for (int j = 0; j < 11; j++)
total += 2;

System.out.println(total);

A. 24
B. 120
C. 143
D. 286
E. 338

Clicker 3
What is output when method sample is called?
// pre: n >= 0, m >= 0
public static void sample(int n, int m) {

int total = 0;
for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)
total += 5;

System.out.println(total);
}

A. 5 D. nm

B. n * m E. (n * m)5

C. n * m * 5
CS 314 Efficiency - Complexity 7 CS 314 Efficiency - Complexity 8

Example

How many statements are executed by
method total as a function of
values.length

Let N = values.length
N is commonly used as a variable that denotes
the amount of data

public int total(int[] values) {
int result = 0;
for (int i = 0; i < values.length; i++)

result += values[i];
return result;

}

CS 314 Efficiency - Complexity 9

Counting Up Statements
int result = 0; 1

int i = 0; 1

i < values.length; N + 1
i++ N

result += values[i]; N

return total; 1

T(N) = 3N + 4

T(N) is the number of executable
statements in method total as function of
values.length

Another Simplification
When determining complexity of an
algorithm we want to simplify things

ignore some details to make comparisons easier

Like assigning your grade for course

the details of your performance in the course

and tests

simply a letter grade, B- or A or D+

So we focus on the dominant term from the
function and ignore the coefficient

CS 314 Efficiency - Complexity 10

Big O
The most common method and notation for
discussing the execution time of algorithms is
Big O, also spoken Order

Big O is the asymptotic execution time
of the algorithm

In other words, how does the running time of the
algorithm grow as a function of the amount of
input data?

Big O is an upper bounds

It is a mathematical tool

Hide a lot of unimportant details by assigning
a simple grade (function) to algorithms

CS 314 Efficiency - Complexity 12

Formal Definition of Big O
T(N) is O(F(N)) if there are positive
constants c and N0 such that T(N) < cF(N)
when N > N0

N is the size of the data set the algorithm works on

T(N) is a function that characterizes the actual
running time of the algorithm

F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big functions table)

c and N0 are constants

CS 314 Efficiency - Complexity 13

What it Means
T(N) is the actual growth rate of the
algorithm

can be equated to the number of executable
statements in a program or chunk of code

F(N) is the function that bounds the growth
rate

may be upper or lower bound

T(N) may not necessarily equal F(N)
constants and lesser terms ignored because it is
a bounding function

CS 314 Efficiency - Complexity 14

Showing O(N) is Correct
Recall the formal definition of Big O

T(N) is O(F(N)) if there are positive constants c
and N0 such that T(N) < cF(N) when N > N0

Recall method total, T(N) = 3N + 4
show method total is O(N).

F(N) is N

We need to choose constants c and N0

how about c = 4, N0 = 5 ?

CS 314 Efficiency - Complexity 15

horizontal axis: N, number of elements in data set

vertical axis: time for algorithm to complete. (simplified to
number of executable statements)

T(N), actual function of number of computations.
In this case 3N + 4

F(N), approximate function
of computations. In this case N

No = 5

c * F(N), in this case,
c = 4, c * F(N) = 4N

CS 314 Efficiency - Complexity 16

Typical Big O Functions "Grades"
Function Common Name

N! factorial

2N Exponential

Nd, d > 3 Polynomial

N3 Cubic

N2 Quadratic

N N N Square root N

N log N N log N

N Linear

N Root - n

log N Logarithmic

1 Constant

Running
time grows
'slowly' with
more input.

Running
time grows
'quickly' with
more input.

Clicker 4
Which of the following is true?
Recall T(N)total = 3N + 4

A. Method total is O(N1/2)

B. Method total is O(N)

C. Method total is O(N2)

D. Two of A C are correct

E. All of three of A C are correct

CS 314 Efficiency - Complexity 17

Show 10N2 + 15N is O(N2)

Break into terms.

10N2 < 10N2

15N < 15N2 for N > 1 (Now add)

10N2 + 15N < 10N2 + 15N2 for N > 1

10N2 + 15N < 25N2 for N > 1

c = 25, N0 = 1

Note, the choices for c and N0 are not unique.
CS 314 Efficiency - Complexity 18

CS 314 Efficiency - Complexity 19

Dealing with other methods
What do I do about method calls?

double sum = 0.0;
for (int i = 0; i < n; i++)

sum += Math.sqrt(i);

Long way
go to that method or constructor and
count statements

Short way
substitute the simplified Big O function for
that method.
if Math.sqrt is constant time, O(1), simply count
sum += Math.sqrt(i); as one statement.

CS 314 Efficiency - Complexity 20

Dealing With Other Methods
public int foo(int[] data) {

int total = 0;
for (int i = 0; i < data.length; i++)

total += countDups(data[i], data);
return total;

}
// method countDups is O(N) where N is the
// length of the array it is passed

Clicker 5, What is the Big O of foo?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Independent Loops
// from the Matrix class

public void scale(int factor) {

for (int r = 0; r < numRows(); r++)

for (int c = 0; c < numCols(); c++)

iCells[r][c] *= factor;

}

numRows() returns number of rows in the matrix iCells

numCols() returns number of columns in the matrix iCells

Assume iCells is an N by N square matrix.
Assume numRows and numCols are O(1)

What is the T(N)? Clicker 6, What is the Order?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Bonus question. What if numRows is O(N)?
CS 314 Efficiency - Complexity 22

Just Count Loops, Right?

// Assume mat is a 2d array of booleans.
// Assume mat is square with N rows,
// and N columns.
public static void count(boolean[][] mat,

int row, int col) {
int numThings = 0;
for (int r = row - 1; r <= row + 1; r++)

for (int c = col - 1; c <= col + 1; c++)
if (mat[r][c])

numThings++;

Clicker 7, What is the order of the method count?
A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

CS 314 Efficiency - Complexity 23

It is Not Just Counting Loops
// "Unroll" the loop of method count:

int numThings = 0;

if (mat[r-1][c-1]) numThings++;

if (mat[r-1][c]) numThings++;

if (mat[r-1][c+1]) numThings++;

if (mat[r][c-1]) numThings++;

if (mat[r][c]) numThings++;

if (mat[r][c+1]) numThings++;

if (mat[r+1][c-1]) numThings++;

if (mat[r+1][c]) numThings++;

if (mat[r+1][c+1]) numThings++;

Just Count Loops, Right?

Clicker 8, What is the order of method mystery?
A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

private static void mystery(int[] data) {
stopIndex = data.length 1;
int j = 1;
while (stopIndex > 0) {

if (data[j 1] > data[j]) {
int t = data[j];
data[j] = data[j 1];
data[j 1] = t;

}
if (j == stopIndex) {

stopIndex--;
j = 1;

} else {
j++;

}
} N = data.length

CS 314 Efficiency - Complexity 25

Sidetrack, the logarithm
Thanks to Dr. Math
32 = 9
likewise log3 9 = 2

"The log to the base 3 of 9 is 2."

The way to think about log is:
"the log to the base x of y is the number you can
raise x to to get y."
Say to yourself "The log is the exponent." (and say
it over and over until you believe it.)
In CS we work with base 2 logs, a lot

log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

The base of the log is typically not included as we can switch from
one base to another by multiplying by a constant factor.

26

When Do Logarithms Occur
Algorithms tend to have a logarithmic term when
they use a divide and conquer technique

the size of the data set keeps getting divided by 2
public int foo(int n) {

// pre n > 0
int total = 0;
while (n > 0) {

n = n / 2;
total++;

}
return total;

}

Clicker 9, What is the order of the above code?

A. O(1) B. O(logN) C. O(N)

D. O(Nlog N) E. O(N2)

CS 314 Efficiency - Complexity 27

Significant Improvement Algorithm
with Smaller Big O function

Problem: Given an array of ints replace any
element equal to 0 with the maximum
positive value to the right of that element. (if
no positive value to the right, leave
unchanged.)

Given:
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]

Replace Zeros Typical Solution
public void replace0s(int[] data){

for(int i = 0; i < data.length; i++){
if (data[i] == 0) {
int max = 0;
for(int j = i+1; j<data.length; j++)

max = Math.max(max, data[j]);
data[i] = max;

}
}

}
Assume all values are zeros. (worst case)
Example of a dependent loops.
Clicker 10 - Number of times j < data.length evaluated?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

CS 314 Efficiency - Complexity 29

Replace Zeros Alternate Solution
public void replace0s(int[] data){

int max =
Math.max(0, data[data.length 1]);

int start = data.length 2;
for (int i = start; i >= 0; i--) {

if (data[i] == 0)
data[i] = max;

else
max = Math.max(max, data[i]);

}
}
Clicker 11 - Big O of this approach?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Clicker 12
Is O(N) really that much faster than O(N2)?

A. never

B. always

C. typically

Depends on the actual functions and the
value of N.

1000N + 250 compared to N2 + 10

When do we use mechanized computation?

N = 100,000

100,000,250 < 10,000,000,010 (108 < 1010)
30

CS 314 Efficiency - Complexity 31

A VERY Useful Proportion
Since F(N) is characterizes the running time
of an algorithm the following proportion
should hold true:

F(N0) / F(N1) ~= time0 / time1

An algorithm that is O(N2) takes 3 seconds
to run given 10,000 pieces of data.

How long do you expect it to take when there are
30,000 pieces of data?

common mistake

logarithms?

CS 314 Efficiency - Complexity 32

Why Use Big O?
As we build data structures Big O is the tool we will
use to decide under what conditions one data
structure is better than another
Think about performance when there is a lot of
data.

"It worked so well with small data sets..."
Joel Spolsky, Schlemiel the painter's Algorithm

Lots of trade offs
some data structures good for certain types of problems,
bad for other types
often able to trade SPACE for TIME.
Faster solution that uses more space
Slower solution that uses less space

CS 314 Efficiency - Complexity 33

Big O Space
Big O could be used to specify how much
space is needed for a particular algorithm

in other words how many variables are needed

Often there is a time space tradeoff
can often take less time if willing to use more
memory

can often use less memory if willing to take
longer

truly beautiful solutions take less time and space

The biggest difference between time and space is
that you can't reuse time. - Merrick Furst

CS 314 Efficiency - Complexity 34

Quantifiers on Big O
It is often useful to discuss different cases for
an algorithm

Best Case: what is the best we can hope for?
least interesting, but a good exercise

Don't assume no data. Amount of date is still
variable, possibly quite large

Average Case (a.k.a. expected running time):
what usually happens with the algorithm?

Worst Case: what is the worst we can expect
of the algorithm?

very interesting to compare this to the average case

CS 314 Efficiency - Complexity 35

Best, Average, Worst Case
To Determine the best, average, and worst
case Big O we must make assumptions
about the data set
Best case -> what are the properties of the data set
that will lead to the fewest number of executable
statements (steps in the algorithm)
Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements
Average case -> Usually this means assuming the
data is randomly distributed

or if I ran the algorithm a large number of times with different sets of
data what would the average amount of work be for those runs?

CS 314 Efficiency - Complexity 36

public double minimum(double[] values) {
int n = values.length;
double minValue = values[0];
for (int i = 1; i < n; i++)

if (values[i] < minValue)
minValue = values[i];

return minValue;
}

Another Example

T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

If no other information, assume asking average case

CS 314 Efficiency - Complexity 37

Example of Dominance
Look at an extreme example. Assume the
actual number as a function of the amount of
data is:

N2/10000 + 2Nlog10 N+ 100000

Is it plausible to say the N2 term dominates
even though it is divided by 10000 and that
the algorithm is O(N2)?

What if we separate the equation into
(N2/10000) and (2N log10 N + 100000) and
graph the results.

CS 314 Efficiency - Complexity 38

Summing Execution Times

For large values of N the N2 term dominates so the
algorithm is O(N2)
When does it make sense to use a computer?

red line is
2Nlog10 N + 100000

blue line is
N2/10000

CS 314 Efficiency - Complexity 39

Comparing Grades
Assume we have a problem

Algorithm A solves the problem correctly and
is O(N2)

Algorithm B solves the same problem
correctly and is O(N log2N)

Which algorithm is faster?

One of the assumptions of Big O is that the
data set is large.

The "grades" should be accurate tools if this
holds true.

CS 314 Efficiency - Complexity 40

Running Times
Assume N = 100,000 and processor speed
is 1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030,086 years

N4 3171 years

N3 11.6 days

N2 10 seconds

N N 0.032 seconds

N log N 0.0017 seconds

N 0.0001 seconds

N 3.2 x 10-7 seconds

log N 1.2 x 10-8 seconds

CS 314 Efficiency - Complexity 41

Theory to Practice OR
Dykstra says: "Pictures are for the Weak."

1000 2000 4000 8000 16000 32000 64000 128K

O(N) 2.2x10-5 2.7x10-5 5.4x10-5 4.2x10-5 6.8x10-5 1.2x10-4 2.3x10-4 5.1x10-4

O(NlogN) 8.5x10-5 1.9x10-4 3.7x10-4 4.7x10-4 1.0x10-3 2.1x10-3 4.6x10-3 1.2x10-2

O(N3/2) 3.5x10-5 6.9x10-4 1.7x10-3 5.0x10-3 1.4x10-2 3.8x10-2 0.11 0.30

O(N2) ind. 3.4x10-3 1.4x10-3 4.4x10-3 0.22 0.86 3.45 13.79 (55)

O(N2)
dep.

1.8x10-3 7.1x10-3 2.7x10-2 0.11 0.43 1.73 6.90 (27.6)

O(N3) 3.40 27.26 (218)
(1745)

29 min.
(13,957)
233 min

(112k)
31 hrs

(896k)
10 days

(7.2m)

80 days

Times in Seconds. Red indicates predicated value.

CS 314 Efficiency - Complexity 42

Change between Data Points

1000 2000 4000 8000 16000 32000 64000 128K 256k 512k

O(N) - 1.21 2.02 0.78 1.62 1.76 1.89 2.24 2.11 1.62

O(NlogN) - 2.18 1.99 1.27 2.13 2.15 2.15 2.71 1.64 2.40

O(N3/2) - 1.98 2.48 2.87 2.79 2.76 2.85 2.79 2.82 2.81

O(N2) ind - 4.06 3.98 3.94 3.99 4.00 3.99 - - -

O(N2)
dep

- 4.00 3.82 3.97 4.00 4.01 3.98 - - -

O(N3) - 8.03 - - - - - - - -

Value obtained by Timex / Timex-1

CS 314 Efficiency - Complexity 43

Okay, Pictures
Results on a 2GhZ laptop

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5000 10000 15000 20000 25000 30000 35000

Value of N

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 44

Put a Cap on Time
Results on a 2GhZ laptop

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5000 10000 15000 20000 25000 30000 35000

Value of N

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 45

No O(N^2) Data

Results on a 2GhZ laptop

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 100000 200000 300000 400000 500000 600000

Value of N

N

NlogN
NsqrtN

CS 314 Efficiency - Complexity 46

Just O(N) and O(NlogN)

Results on a 2GhZ laptop

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 100000 200000 300000 400000 500000 600000

Value of N

N

NlogN

CS 314 Efficiency - Complexity 47

Just O(N)

N

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0 100000 200000 300000 400000 500000 600000

N

CS 314 Efficiency - Complexity 48

109 instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N2)

10 0.000000003 0.00000001 0.000000033 0.0000001

100 0.000000007 0.00000010 0.000000664 0.0001000

1,000 0.000000010 0.00000100 0.000010000 0.001

10,000 0.000000013 0.00001000 0.000132900 0.1 min

100,000 0.000000017 0.00010000 0.001661000 10 seconds

1,000,000 0.000000020 0.001 0.0199 16.7 minutes

1,000,000,000 0.000000030 1.0 second 30 seconds 31.7 years

CS 314 Efficiency - Complexity 49

Formal Definition of Big O (repeated)

T(N) is O(F(N)) if there are positive
constants c and N0 such that T(N) < cF(N)
when N > N0

N is the size of the data set the algorithm works on

T(N) is a function that characterizes the actual
running time of the algorithm

F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm

c and N0 are constants

CS 314 Efficiency - Complexity 50

More on the Formal Definition

There is a point N0 such that for all values of N that
are past this point, T(N) is bounded by some
multiple of F(N)

Thus if T(N) of the algorithm is O(N^2) then,
ignoring constants, at some point we can bound the
running time by a quadratic function.

given a linear algorithm it is technically correct to
say the running time is O(N ^ 2). O(N) is a more
precise answer as to the Big O of the linear
algorithm

O type questions.

CS 314 Efficiency - Complexity 51

What it All Means
T(N) is the actual growth rate of the
algorithm

can be equated to the number of executable
statements in a program or chunk of code

F(N) is the function that bounds the growth
rate

may be upper or lower bound

T(N) may not necessarily equal F(N)
constants and lesser terms ignored because it is
a bounding function

CS 314 Efficiency - Complexity 52

Other Algorithmic Analysis Tools
Big Omega T(N) is (F(N)) if there are
positive constants c and N0 such that
T(N) > cF(N)) when N > N0

Big O is similar to less than or equal, an upper
bounds

Big Omega is similar to greater than or equal, a
lower bound

Big Theta T(N) is (F(N)) if and only if T(N)
is O(F(N))and T(N) is (F(N)).

Big Theta is similar to equals

CS 314 Efficiency - Complexity 53

Relative Rates of Growth
Analysis

Type
Mathematical
Expression

Relative
Rates of
Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big T(N) = (F(N)) T(N) > F(N)

Big T(N) = (F(N)) T(N) = F(N)

"In spite of the additional precision offered by Big Theta,
Big O is more commonly used, except by researchers
in the algorithms analysis field" - Mark Weiss

Topic 3
Encapsulation - Implementing Classes

as ... object-oriented analysis and design
(a clever way of breaking up software
programming instructions and data into
small, reusable objects, based on certain
abstraction principles and design

-Michael A. Cusumano,
The Business Of Software

Object Oriented Programming
Creating large programs that work turns out
to be very difficult

DIA Automated baggage handling system

Ariane 5 Flight 501

More

Object oriented programming is one way of
managing the complexity of programming
and software projects

Break up big problems into smaller, more
manageable problems

CS 314 Encapsulation - Implementing Classes 2

CS 314 Encapsulation - Implementing Classes 3

Object Oriented Programming
"Object-oriented programming is a method of
programming based on a hierarchy of classes, and
well-defined and cooperating objects. "

What is a class?

"A class is a structure that defines the data and the
methods to work on that data. When you write
programs in the Java language, all program data is
wrapped in a class, whether it is a class you write
or a class you use from the Java platform API
libraries."

a new data type

Object Oriented Programming
In other words break the problem up based
on the things / data types that are part of the
problem

Not the only way

One of many different kinds of strategies or
paradigms for software development

functional, procedural, event driven, data flow,
formal methods, agile or extreme, ...

In 314 we will do a lot of object based
programming

CS 314 Encapsulation - Implementing Classes 4

CS 314 Encapsulation - Implementing Classes 5

Example - Monopoly
If we had to start
from scratch what
classes would we
need to create?

CS 314 Encapsulation - Implementing Classes 6

Encapsulation
One of the features of object oriented
languages

Allows programmers to define
new data types

Hide the data of an object (variable)

Group operations and data together into a
new data type

Usually easier to use something than
understand exactly how it works

microwave, car, computer, software, mp3 player

Data Structures
A data structure is a variable that stores
other variables. (overly simplified definition)

aka Collection, Container

perspective)

Lists are ordered, sets are typically unordered

May allow duplicate values or not
Lists allow duplicates, sets typically do not

CS 314 Encapsulation - Implementing Classes 7

The IntList Class
We will develop a class that models a list of ints

initially a pale imitation of the Java ArrayList class

Improvement on an array of ints
resize automatically

insert easily

remove easily

A list - our first data structure
a variable that stores other variables

Lists maintain elements in a definite order and
duplicates are allowed
0 1 2 3 4 <- indices / positions

[5, 12, 5, 17, -5] <- elements
CS 314 Encapsulation - Implementing Classes 8

CS 314 Encapsulation - Implementing Classes 9

Clicker 1

Our IntList class has an array of ints instance
variable (int[] container). What should the
length of this internal array be?

A. less than or equal to the size of the list

B. greater than or equal to the size of the list

C. equal to the size of the list

D. some fixed amount that never changes

E. 0

Array length less than
the number of elements

in the list?!?

What if most elements are all
the same value? Only store the
elements (and their position) not
equal to the default? Sparse List 10

CS 314 Encapsulation - Implementing Classes 11

Clicker 2
When adding a new element to a list,
where should the new element be
added by default?

A. The beginning

B. The end

C. The middle

D. A random location

CS 314 Encapsulation - Implementing Classes 12

IntList Design
Create a new, empty IntList

new IntList -> []

The above is not code. It is a notation that shows
what the results of operations. [] is an empty list.

add to a list.
[].add(1) -> [1]

[1].add(5) -> [1, 5]

[1, 5].add(4) -> [1, 5, 4]

elements in a list have a definite order and a
position.

zero based position or 1 based positioning?

CS 314 Encapsulation - Implementing Classes 13

0 1 2
[42, 12, 37]

Abstract view of
list of integers

The wall of

abstraction.

IntList aList = new IntList();
aList.add(42);
aList.add(12);

aList.add(37); aList

IntList

size

con

3

42 12 37 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

CS 314 Encapsulation - Implementing Classes 14

Instance Variables
Internal data

also called instance variables because every
instance (object) of this class has its own copy of
these
something to store the elements of the list
size of internal storage container?
if not what else is needed

Must be clear on the difference between the
internal data of an IntList object and the
IntList that is being represented
Why make internal data private?

CS 314 Encapsulation - Implementing Classes 15

Constructors
For initialization of objects

IntList constructors
default

initial capacity?

redirecting to another constructor
this(10);

class constants
what static means

CS 314 Encapsulation - Implementing Classes 16

Default add method
where to add?

what if not enough space?
[].add(3) -> [3]

[3].add(5) -> [3, 5]

[3, 5].add(3) -> [3, 5, 3]

Testing, testing, testing!
a toString method would be useful

The IntList Class
instance variables

constructors
default

initial capacity
preconditions, exceptions, postconditions, assert

meaning of static

add method

get method

size method

CS 314 Encapsulation - Implementing Classes 17 CS 314 Encapsulation - Implementing Classes 18

toString method
return a Java String of list
empty list -> []

one element -> [12]

multiple elements -> [12, 0, 5, 4]

Clicker 3 - Timing Experiment
Add N elements to an initially empty IntList then call
toString. Time both events. How does the time to add
compare to the time to complete toString?

IntList list = new IntList();
for (int i = 0; i < N; i++)

list.add(i); // resize, cap * 2
String s = list.toString();

A. time to add << time for toString()

B. time to add < time for toString()

C. time to add ~= time for toString()

D. time to add > time for toString()

E. time to add >> time for toString()

The IntList Class
testing!!!

toString

Joshua Bloch

insert method (int pos, int value)

remove method(int pos)

insertAll method
(int pos, IntList other)

queens and kings of all the IntLists!!!

CS 314 Encapsulation - Implementing Classes 20

CS 314 Encapsulation - Implementing Classes 21

Clicker Question 4

What is output by the following code?
IntList list
list = new IntList(25);
System.out.println(list.size());

A. 25

B. 0

C. -1

D. unknown

E. No output due to runtime error.
CS 314 Encapsulation - Implementing Classes 22

get and size methods
get

access element from list
preconditions?

[3, 5, 2].get(0) returns 3
[3, 5, 2].get(1) returns 5

size
number of elements in the list
Do not confuse with the capacity of the internal
storage container
The array is not the list!

[4, 5, 2].size() returns 3

CS 314 Encapsulation - Implementing Classes 23

insert method
add at someplace besides the end

[3, 5].insert(1, 4) -> [3, 4, 5]

[3, 4, 5].insert(0, 4) -> [4, 3, 4, 5]

preconditions?

overload add?

chance for internal loose coupling

where what

CS 314 Encapsulation - Implementing Classes 24

Clicker 5
What is output by the following code?
IntList list = new IntList();
list.add(3);
list.insert(0, 4); // position, value
list.insert(1, 1);
list.add(5);
list.insert(2, 9);
System.out.println(list);

A. [4, 1, 3, 9, 5]
B. [3, 4, 1, 5, 9]
C. [4, 1, 9, 3, 5]
D. [3, 1, 4, 9, 5]
E. Something else

CS 314 Encapsulation - Implementing Classes 25

remove method
remove an element from the list based on
location

[3, 4, 5].remove(0) -> [4, 5]

[3, 5, 6, 1, 2].remove(2) ->

[3, 5, 1, 2]

preconditions?

return value?
accessor methods, mutator methods, and
mutator methods that return a value

CS 314 Encapsulation - Implementing Classes 26

Clicker Question 6
What is output by the following code?
IntList list = new IntList();
list.add(12);
list.add(15);
list.add(12);
list.add(17);
list.remove(1);
System.out.println(list);

A. [15, 17]
B. [12, 17]
C. [12, 0, 12, 17]
D. [12, 12, 17]
E. [15, 12, 17]

CS 314 Encapsulation - Implementing Classes 27

insertAll method
add all elements of one list to another
starting at a specified location

[5, 3, 7].insertAll(2, [2, 3]) ->

[5, 3, 2, 3, 7]

The parameter [2, 3] would be unchanged.

Working with other objects of the same type
this?

where is private private?

loose coupling vs. performance

queens and kings of all the IntLists!!!

Clicker 7 - InsertAll First Version
What is the order of the first version of
InsertAll? Assume both lists have N elements
and that the insert position is halfway through
the calling list.

A. O(1)

B. O(logN)

C. O(N0.5)

D. O(N)

E. O(N2)

CS 314 Encapsulation - Implementing Classes 28

Class Design and Implementation
Another Example

This example will not be covered
in class.

CS 314 Encapsulation - Implementing Classes 30

The Die Class
Consider a class used
to model a die

What is the interface? What
actions should a die be able
to perform?

The methods or behaviors can be broken up
into constructors, mutators, accessors

CS 314 Encapsulation - Implementing Classes 31

The Die Class Interface
Constructors (used in creation of objects)

default, single int parameter to specify the
number of sides, int and boolean to determine if
should roll

Mutators (change state of objects)
roll

Accessors (do not change state of objects)
getResult, getNumSides, toString

Public constants
DEFAULT_SIDES

CS 314 Encapsulation - Implementing Classes 32

Visibility Modifiers
All parts of a class have visibility modifiers

Java keywords
public, protected, private, (no modifier means package
access)
do not use these modifiers on local variables (syntax error)

public means that constructor, method, or field may
be accessed outside of the class.

part of the interface
constructors and methods are generally public

private means that part of the class is hidden and
inaccessible by code outside of the class

part of the implementation
data fields are generally private

CS 314 Encapsulation - Implementing Classes 33

The Die Class Implementation
Implementation is made up of constructor code,
method code, and private data members of the
class.
scope of data members / instance variables

private data members may be used in any of the
constructors or methods of a class

Implementation is hidden from users of a class and
can be changed without changing the interface or
affecting clients (other classes that use this class)

Example: Previous version of Die class,
DieVersion1.java

Once Die class completed can be used in anything
requiring a Die or situation requiring random
numbers between 1 and N

DieTester class. What does it do?
CS 314 Encapsulation - Implementing Classes 34

DieTester method

public static void main(String[] args) {
final int NUM_ROLLS = 50;
final int TEN_SIDED = 10;
Die d1 = new Die();
Die d2 = new Die();
Die d3 = new Die(TEN_SIDED);
final int MAX_ROLL = d1.getNumSides() +

d2.getNumSides() + d3.getNumSides();

for(int i = 0; i < NUM_ROLLS; i++)
{ d1.roll();

d2.roll();
System.out.println("d1: " + d1.getResult()

+ " d2: " + d2.getResult() + " Total: "
+ (d1.getResult() + d2.getResult()));

}

CS 314 Encapsulation - Implementing Classes 35

DieTester continued
int total = 0;
int numRolls = 0;
do
{ d1.roll();

d2.roll();
d3.roll();
total = d1.getResult() + d2.getResult()

+ d3.getResult();
numRolls++;

}
while(total != MAX_ROLL);

System.out.println("\n\nNumber of rolls to get "
+ MAX_ROLL + " was " + numRolls);

CS 314 Encapsulation - Implementing Classes 36

Correctness Sidetrack
When creating the public interface of a class give
careful thought and consideration to the contract
you are creating between yourself and users (other
programmers) of your class
Use preconditions to state what you assume to be
true before a method is called

caller of the method is responsible for making sure these
are true

Use postconditions to state what you guarantee to
be true after the method is done if the preconditions
are met

implementer of the method is responsible for making
sure these are true

CS 314 Encapsulation - Implementing Classes 37

Precondition and
Postcondition Example

/* pre: numSides > 1

post: getResult() = 1, getNumSides() = sides

*/

public Die(int numSides)

iMyNumSides = numSides;

iMyResult = 1;

assert getResult() == 1 && getNumSides() == numSides;

}

CS 314 Encapsulation - Implementing Classes 38

Object Behavior - Instantiation
Consider the DieTester class

Die d1 = new Die();
Die d2 = new Die();
Die d3 = new Die(10);

When the new operator is invoked control is
transferred to the Die class and the specified
constructor is executed, based on parameter matching

Space(memory) is set aside for the new object's fields

The memory address of the new object is passed
back and stored in the object variable (pointer)

After creating the object, methods may be called on it.

CS 314 Encapsulation - Implementing Classes 39

Creating Dice Objects
a Die object

iMySides iMyResult

6 1

a Die object

iMySides iMyResult

6 1

a Die object

iMySides iMyResult

10 1

d1

memory

address

d2

memory

address

d3

memory

address

DieTester class. Sees

interface of Die class
Die class.

Sees

implementation.

(of Die class.)

CS 314 Encapsulation - Implementing Classes 40

Objects
Every Die object created has its own
instance of the variables declared in the
class blueprint

private int iMySides;
private int iMyResult;

thus the term instance variable
the instance vars are part of the hidden
implementation and may be of any data type

unless they are public, which is almost always a
bad idea if you follow the tenets of information
hiding and encapsulation

CS 314 Encapsulation - Implementing Classes 41

Complex Objects
What if one of the instance variables is itself
an object?

add to the Die class
private String myName;

a Die object

iMySides iMyResult

6 1
d1

memory

address

myName

memory
address

a String object

implementation
details not shown

d1 can hold the memory address
of a Die object. The instance variable
myName inside a Die object can hold
the memory address of a String object

CS 314 Encapsulation - Implementing Classes 42

The Implicit Parameter
Consider this code from the Die class
public void roll()
{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;
}

Taken in isolation this code is rather confusing.

what is this iMyResult thing?
It's not a parameter or local variable

why does it exist?

it belongs to the Die object that called this method

if there are numerous Die objects in existence

Which one is used depends on which object called
the method.

CS 314 Encapsulation - Implementing Classes 43

The this Keyword
When a method is called it may be necessary
for the calling object to be able to refer to itself

most likely so it can pass itself somewhere as a
parameter

when an object calls a method an implicit
reference is assigned to the calling object
the name of this implicit reference is this

this is a reference to the current calling object
and may be used as an object variable (may not
declare it)

CS 314 Encapsulation - Implementing Classes 44

this Visually
// in some class other than Die
Die d3 = new Die();
d3.roll();

// in the Die class
public void roll()
{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;

/* OR

*/

}

a Die object

iMySides iMyResult

6 1

d3

memory

address

this

memory

address

CS 314 Encapsulation - Implementing Classes 45

An equals method

working with objects of the same type in a
class can be confusing

write an equals method for the Die class.
assume every Die has a myName instance
variable as well as iMyNumber and iMySides

CS 314 Encapsulation - Implementing Classes 46

A Possible Equals Method
public boolean equals(Object otherObject)
{ Die other = (Die)otherObject;

return iMySides == other.iMySides
&& iMyResult== other.iMyResult
&& myName.equals(other.myName);

}
Declared Type of Parameter is Object not Die
override (replace) the equals method instead of
overload (present an alternate version)

easier to create generic code

we will see the equals method is inherited from
the Object class
access to another object's private instance
variables?

CS 314 Encapsulation - Implementing Classes 47

Another equals Methods

public boolean equals(Object otherObject)
{ // dangerous! Not checking for null or type.

Die other = (Die)otherObject;
return this.iMySides == other.iMySides

&& this.iMyNumber == other.iMyNumber
&& this.myName.equals(other.myName);

}

Using the this keyword / reference to access the implicit parameters
instance variables is unnecessary.
If a method within the same class is called within a method, the
original calling object is still the calling object

CS 314 Encapsulation - Implementing Classes 48

A "Perfect" Equals Method
From Cay Horstmann's Core Java

public boolean equals(Object otherObject)
{ // check if objects identical

if(this == otherObject)
return true;

// must return false if explicit parameter null
if(otherObject == null)

return false;
// if objects not of same type they cannot be equal
if(getClass() != otherObject.getClass())

return false;
// we know otherObject is a non null Die
Die other = (Die)otherObject;
return iMySides == other.iMySides

&& iMyNumber == other.iMyNumber
&& myName.equals(other.myName);

}

CS 314 Encapsulation - Implementing Classes 49

the instanceof Operator
instanceof is a Java keyword.

part of a boolean statement
public boolean equals(Object otherObj)
{ if otherObj instanceof Die

{ //now go and cast
// rest of equals method

}
}

Should not use instanceof in equals methods.

instanceof has its uses but not in equals
because of the contract of the equals method

CS 314 Encapsulation - Implementing Classes 50

Class Variables and Class Methods

Sometimes every object of a class does not
need its own copy of a variable or constant
The keyword static is used to specify
class variables, constants, and methods
private static Random ourRandNumGen

= new Random();
public static final int DEFAULT_SIDES = 6;

The most prevalent use of static is for class
constants.

if the value can't be changed why should every
object have a copy of this non changing value

CS 314 Encapsulation - Implementing Classes 51

Class Variables and Constants
the Die class

DEFAULT_SIDES

6

ourRandNumGen

memory
address

a Random object

implementation
details not shown

All objects of type Die have
access to the class variables
and constants.

A public class variable or constant
may be referred to via the class name.

CS 314 Encapsulation - Implementing Classes 52

Syntax for Accessing Class Variables
public class UseDieStatic
{ public static void main(String[] args)

{ System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

// Any attempt to access Die.ourRandNumGen
// would generate a syntax error

Die d1 = new Die(10);

System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

System.out.println("d1.DEFAULT_SIDES "
+ d1.DEFAULT_SIDES);

// regardless of the number of Die objects in
// existence, there is only one copy of DEFAULT_SIDES
// in the Die class

} // end of main method
} // end of UseDieStatic class

CS 314 Encapsulation - Implementing Classes 53

Static Methods
static has a somewhat different
meaning when used in a method
declaration
static methods may not manipulate any
instance variables
in non static methods, some object
invokes the method
d3.roll();
the object that makes the method call is
an implicit parameter to the method

CS 314 Encapsulation - Implementing Classes 54

Static Methods Continued
Since there is no implicit object parameter
sent to the static method it does not have
access to a copy of any objects instance
variables

unless of course that object is sent as an
explicit parameter

Static methods are normally utility methods
or used to manipulate static variables
(class variables)
The Math and System classes are nothing
but static methods

CS 314 Encapsulation - Implementing Classes 55

static and this
Why does this work (added to Die class)

but this doesn't?
public class StaticThis
{

public static void main(String[] args)
{ System.out.println(this);
}

}

public class Die
{

public void outputSelf()
{ System.out.println(this);
}

}

1

Topic 4

Inheritance

"Question: What is the object oriented way of
getting rich?

CS 314 Inheritance 2

Features of OO Programming
Encapsulation

abstraction, creating new data types

information hiding

breaking problem up based on data types

Inheritance
code reuse

specialization

"New code using old code."

Encapsulation
Create a program to allow people to play the
game Monopoly

Create classes for money, dice, players, the
bank, the board, chance cards, community chest
cards, pieces, etc.

Some classes use other classes. Are clients
the board consists of spaces

a player has properties they own

a piece has a position

Also referred to as composition

CS 314 Inheritance 3

Inheritance
Another kind of relationship exists between
things in the world and data types in programs

There are properties in Monopoly
a street is a kind of property

a railroad is a kind of property

a utility is a kind of property

CS 314 Inheritance 4

Inheritance
In Monopoly there is the concept of a
Property

All properties have some common traits
they have a name

they have a position on the board

they can be owned by players

they have a purchase price

But some things are different for each of the
three kinds of property

How to determine rent when another player
lands on the Property

CS 314 Inheritance 5

What to Do?
If we have a separate class for Street,
Railroad, and Utility there is going to be a lot
of code copied

hard to maintain

an anti-pattern

Inheritance is a programming feature to
allow data types to build on pre-existing data
types without repeating code

CS 314 Inheritance 6

Mechanics of Inheritance

CS 314 Inheritance 7

1. extends keyword

2. inheritance of instance methods

3. inheritance of instance variables

4. object initialization and constructors
5. calling a parent constructor with super()

6. overriding methods
7. partial overriding, super.parentMethod()

8. inheritance requirement in Java
9. the Object class

10. inheritance hierarchies

CS 314 Inheritance 8

Inheritance in Java
Java is designed to encourage object
oriented programming
all classes, except one, must inherit from
exactly one other class
The Object class is the cosmic super class

The Object class does not inherit from any other class
The Object class has several important methods:
toString, equals, hashCode, clone, getClass

implications:
all classes are descendants of Object
all classes and thus all objects have a toString,
equals, hashCode, clone, and getClass method

toString, equals, hashCode, clone normally overridden

CS 314 Inheritance 9

Nomenclature of Inheritance
In Java the extends keyword is used in the
class header to specify which preexisting class
a new class is inheriting from
public class Student extends Person

Person is said to be
the parent class of Student
the super class of Student
the base class of Student
an ancestor of Student

Student is said to be
a child class of Person
a sub class of Person
a derived class of Person
a descendant of Person

CS 314 Inheritance 10

Clicker 1
What is the primary reason for using
inheritance when programming?

A. To make a program more complicated

B. To copy and paste code between classes

C. To reuse pre-existing code

D. To hide implementation details of a class

E. To ensure pre conditions of methods are met.

11

Clicker 2
What is output when the main method is run?
public class Foo {

public static void main(String[] args) {

Foo f1 = new Foo();

System.out.println(f1.toString());

}

}

A. 0

B. null

C. Unknown until code is actually run.

D. No output due to a syntax error.

E. No output due to a runtime error. CS 314 Inheritance 12

Overriding methods
any method that is not final may be
overridden by a descendant class

same signature as method in ancestor

may not reduce visibility

may use the original method if simply want to
add more behavior to existing

super.originalMethod()

CS 314 Inheritance 13

Constructors
Constructors handle initialization of objects

When creating an object with one or more ancestors (every
type except Object) a chain of constructor calls takes place
The reserved word super may be used in a constructor to
call a one of the parent's constructors

must be first line of constructor

if no parent constructor is explicitly called the default, 0
parameter constructor of the parent is called

if no default constructor exists a syntax error results

If a parent constructor is called another constructor in the
same class may no be called

no super();this(); allowed. One or the other, not both

good place for an initialization method

CS 314 Inheritance 14

The Keyword super
super is used to access something (any protected or
public field or method) from the super class that has
been overridden
Rectangle's toString makes use of the toString in
ClosedShape my calling super.toString()

without the super calling toString would result in
infinite recursive calls

Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically this
refers to a valid method, Object's toString

Rectangle partially overrides ClosedShapes toString

Creating a SortedIntList
- A Cautionary Tale

of Inheritance

CS 314 Inheritance 16

A New Class
Assume we want to have a list of ints, but
that the ints must always be maintained in
ascending order
[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min

sortedList.get(list.size() 1)
returns the max

CS 314 Inheritance 17

Implementing SortedIntList
Do we have to write a whole new class?
Assume we have an IntList class.

Clicker 3 - Which of the following methods
have to be changed?
A. add(int value)

B. int get(int location)

C. String toString()

D. int remove(int location)

E. More than one of A D.

CS 314 Inheritance 18

Overriding the add Method
First attempt

Problem?

solving with insert method
double edged sort

solving with protected
What protected really means

Clicker 4
public class IntList {

private int size
private int[] con

}
public class SortedIntList extends IntList {

public SortedIntList() {
System.out.println(size); // Output?

}
}

A. 0
B. null
C. unknown until code is run
D. no output due to a compile error
E. no output due to a runtime error 19 CS 314 Inheritance 20

Problems
What about this method?

void insert(int location, int val)

What about this method?
void insertAll(int location,

IntList otherList)

SortedIntList is not a good application
of inheritance given all the behaviors
IntList provides.

More Example Code

ClosedShape and Rectangle classes

CS 314 Inheritance 21

Simple Code Example
Create a class named Shape

what class does Shape inherit from

what methods can we call on Shape objects?

add instance variables for a position

override the toString method

Create a Circle class that extends Shape
add instance variable for radius

debug and look at contents

try to access instance var from Shape

constructor calls

use of key word super

CS 314 Inheritance 22

CS 314 Inheritance 23

Shape Classes
Declare a class called ClosedShape

assume all shapes have x and y coordinates
override Object's version of toString

Possible sub classes of ClosedShape
Rectangle

Circle

Ellipse

Square

Possible hierarchy
ClosedShape <- Rectangle <- Square

CS 314 Inheritance 24

A ClosedShape class
public class ClosedShape {

private double myX;
private double myY;

public ClosedShape() {
this(0,0);

}

public ClosedShape (double x, double y) {
myX = x;
myY = y;

}

public String toString() {
return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }
public double getY(){ return myY; }

}
// Other methods not shown

CS 314 Inheritance 25

A Rectangle Constructor
public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle(double x, double y,
double width, double height) {

super(x,y);
// calls the 2 double constructor in
// ClosedShape
myWidth = width;
myHeight = height;

}

// other methods not shown
}

CS 314 Inheritance 26

A Rectangle Class
public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle() {
this(0, 0);

}

public Rectangle(double width, double height) {
myWidth = width;
myHeight = height;

}

public Rectangle(double x, double y,
double width, double height) {

super(x, y);
myWidth = width;
myHeight = height;

}

public String toString() {
return super.toString() + " width " + myWidth

+ " height " + myHeight;
}

}

CS 314 Inheritance 27

Initialization method
public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle() {
init(0, 0);

}

public Rectangle(double width, double height) {
init(width, height);

}

public Rectangle(double x, double y,
double width, double height) {

super(x, y);
init(width, height);

}

private void init(double width, double height) {
myWidth = width;
myHeight = height;

}
CS 314 Inheritance 28

Result of Inheritance
Do any of these cause a syntax error?
What is the output?
Rectangle r = new Rectangle(1, 2, 3, 4);
ClosedShape s = new CloseShape(2, 3);
System.out.println(s.getX());
System.out.println(s.getY());
System.out.println(s.toString());
System.out.println(r.getX());
System.out.println(r.getY());
System.out.println(r.toString());
System.out.println(r.getWidth());

CS 314 Inheritance 29

The Real Picture

Fields from ClosedShape class

Instance Variables declared in
ClosedShape

Fields from Object class

Instance variables
declared in Object

A
Rectangle
object

Available
methods
are all methods
from Object,
ClosedShape,
and Rectangle

Fields from Rectangle class

Instance Variables declared in
Rectangle

CS 314 Inheritance 30

Access Modifiers and
Inheritance

public
accessible to all classes

private
accessible only within that class. Hidden from all sub
classes.

protected
accessible by classes within the same package and all
descendant classes

Instance variables are typically private
protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

CS 314 Inheritance 31

Why private Vars and not protected?

In general it is good practice to make
instance variables private

hide them from your descendants

if you think descendants will need to access
them or modify them provide protected methods
to do this

Why?

Consider the following example

CS 314 Inheritance 32

Required update
public class GamePiece {

private Board myBoard;

private Position myPos;

// whenever my position changes I must
// update the board so it knows about the change

protected void alterPos(Position newPos) {

Position oldPos = myPos;
myPos = newPos;
myBoard.update(oldPos, myPos);

}

1

Topic 5

Polymorphism

- OOP Koan

CS314 Polymorphism 2

Polymorphism
Another feature of OOP

object variables in Java are polymorphic
object variables can refer to objects of their
declared type AND any objects that are
descendants of the declared type
Property p = new Property();
p = new Railroad(); // legal!
p = new Utility(); //legal!
p = new Street();
Object obj1; // = what?

CS314 Polymorphism 3

Data Type
object variables have:

a declared type. Also called the static type.
a dynamic type. What is the actual type of the
pointee at run time or when a particular
statement is executed.

Method calls are syntactically legal if the
method is in the declared type or any
ancestor of the declared type
The actual method that is executed at
runtime is based on the dynamic type

dynamic dispatch

CS314 Polymorphism 4

Clicker Question 1
Consider the following class declarations:
public class BoardSpace
public class Property extends BoardSpace
public class Street extends Property
public class Railroad extends Property

Which of the following statements would cause a syntax
error? (Assume all classes have a zero argument
constructor.)

A. Object obj = new Railroad();
B. Street s = new BoardSpace();
C. BoardSpace b = new Street();
D. Railroad r = new Street();
E. More than one of these

CS314 Polymorphism 5

Method LookUp
To determine if a method is legal the compiler looks in the
class of the declared type

if it finds it great, if not go to the super class and look there
continue until the method is found, or the Object class is reached
and the method was never found. (Compile error)

To determine which method is actually executed the run
time system (abstractly):

starts with the actual run time class of the object that is calling the
method
search the class for that method
if found, execute it, otherwise go to the super class and keep looking
repeat until a version is found

CS314 Polymorphism 6

Clicker Question 2
What is output by the
code to the right when
run?

A. !!live
B. !eggegg
C. !egglive
D. !!!
E. Something else

public class Animal {
public String bt(){ return "!"; }

}

public class Mammal extends Animal {

public String bt(){ return "live"; }

}

public class Platypus extends Mammal {
public String bt(){ return "egg";}

}

Animal a1 = new Animal();
Animal a2 = new Platypus();

Mammal m1 = new Platypus();
System.out.print(a1.bt());
System.out.print(a2.bt());

System.out.print(m1.bt());

Clicker Question 3

What is output by
the code to the
right when run?
Think carefully
about the dynamic
type.

A. MeowWoof
B. MeowEm
C. EmWoof
D. EmEm
E. Something else

public class Animal {
public void show() {

System.out.print(this.speak());
}
public String speak() { return "Em"; }

}

public class Dog extends Animal {
public String speak() { return "Woof"; }

}

public class Cat extends Animal {
public void show(int x) {

System.out.print("Meow");
}

}

Cat patches = new Cat();
Dog velvet = new Dog();
patches.show();
velvet.show(); CS314 Polymorphism 8

Why Bother?
Inheritance allows programs to model
relationships in the real world

if the program follows the model it may be easier
to write

Inheritance allows code reuse
complete programs faster (especially
large programs)

Polymorphism allows code reuse
in another way
Inheritance and polymorphism allow
programmers to create generic algorithms

CS314 Polymorphism 9

Genericity
One of the goals of OOP is the support of
code reuse to allow more efficient program
development
If a algorithm is essentially the same, but the
code would vary based on the data type
genericity allows only a single version of that
code to exist
in Java, there are 2 ways of doing this
1. polymorphism and the inheritance requirement
2. generics

CS314 Polymorphism 10

A Generic List Class

CS314 Polymorphism 11

Back to IntList
We may find IntList useful, but what if we
want a List of Strings? Rectangles?
Lists?

What if I am not sure?

Are the List algorithms different if I am
storing Strings instead of ints?

How can we make a generic List class?

CS314 Polymorphism 12

Generic List Class
required changes
How does toString have to change?

why?!?!
A good example of why keyword this is
necessary from toString

What can a List hold now?

How many List classes do I need?

Clicker 4
After altering the data type of the elements to
Object in our list class, how many lines of
code in the toString method, originally from
the IntList class, need to be changed?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Polymorphism 13 CS314 Polymorphism 14

Writing an equals Method
How to check if two objects are equal?

if(objA == objA)

// does this work?

Why not this
public boolean equals(List other)

Because
public void foo(List a, Object b)

if(a.equals(b))
System.out.println(same)

what if b is really a List?

CS314 Polymorphism 15

equals method
read the javadoc carefully!
Must handle null

Parameter must be Object
otherwise overloading instead of overriding

causes

must handle cases when parameter is not
same data type as calling object
instanceof or getClass()

don't rely on toString and then String's
equals (efficiency)

CS314 Polymorphism 16

the createASet example

public Object[] createASet(Object[] items)
{ /*

pre: items != null, no elements
of items = null
post: return an array of Objects
that represents a set of the elements
in items. (all duplicates removed)
*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS314 Polymorphism 17

createASet examples
String[] sList = {"Texas", "texas", "Texas",

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println(sSet[i]);

Object[] list = {"Hi", 1, 4, 3.3, true,
new ArrayList(), "Hi", 3.3, 4};

Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println(set[i]);

Topic 6
Generic Type Parameters

"Get your data structures correct
first, and the rest of the program will
write itself."
- David Jones

CS314 Generics 2

Back to our Array Based List
Started with a list of ints

Don't want to have to write a new list class
for every data type we want to store in lists
Moved to an array of Objects to store the
elements of the list
// from array based list

private Object[] con;

CS314 Generics 3

Using Object
In Java, all classes inherit from exactly one
other class except Object which is at the top
of the class hierarchy

therefore all classes are descendants of Object

object variables can refer to objects of their
declared type and any descendants

polymorphism

Thus, if the internal storage container is of
type Object it can hold anything

primitives handled by wrapping them in objects.
int Integer, char - Character

CS314 Generics 4

Difficulties with Object
Creating generic data structures using the
Object data type and polymorphism is
relatively straight forward

Using these generic data structrues leads to
some difficulties

Casting

Type checking

Code examples on the following slides

Clicker 1
What is output by the following code?

GenericList list = new GenericList(); // 1

Street s = new Street("Boardwalk", 400,
Color.BLUE);

list.add(s); // 2

System.out.print(list.get(0).getPrice());// 3

A. 400

B. No output due to syntax error at line // 1

C. No output due to syntax error at line // 2

D. No output due to syntax error at line // 3

E. No output due to runtime error.
CS314 Generics 5 CS314 Generics 6

Code Example - Casting
Assume a list class
GenericList li = new GenericList();
li.add("Hi");

System.out.println(li.get(0).charAt(0));

// previous line has syntax error

// return type of get is Object

// Object does not have a charAt method

// compiler relies on declared type

System.out.println(

((String) li.get(0)).charAt(0));

// must cast to a String

CS314 Generics 7

Code Example type checking

//pre: all elements of li are Monopoly Properties

public void printPrices(GenericList li) {

for (int i = 0; i < li.size(); i++) {

Property temp = (Property) li.get(i);

System.out.println(temp.getPrice());

}

}

// what happens if pre condition not met?

CS314 Generics 8

"Fixing" the Method
//pre: all elements of li are Monopoly Properties

public void printPrices(GenericList li) {

for(int i = 0; i < li.size(); i++) {

// GACK!!!!

if (li.get(i) instanceof Property) {

Property temp = (Property) li.get(i);

System.out.println(temp.getPrice());

}

}

}

CS314 Generics 9

Clicker 2 - Too Generic?
Does this code compile?
GenericList list = new GenericList();

list.add("Olivia");

list.add(Integer.valueOf(12));

list.add(12); // autobox aka autowrap

list.add(new Rectangle(1, 2, 3, 4));

list.add(new GenericList());

A. No

B. Yes

Is this a bug or a feature?

CS314 Generics 10

CS314 Generics 11

Generic Types
Java has syntax for parameterized data types

Referred to as Generic Types in most of the
literature

A traditional parameter has a data type and can
store various values just like a variable
public void foo(int x)

Generic Types are like parameters, but the data
type for the parameter is data type

like a variable that stores a data type

this is an abstraction. Actually, all data type info is
erased at compile time and replaced with casts and,
typically, variables of type Object

CS314 Generics 12

Making our Array List Generic
Data type variables declared in class header

public class GenericList<E> {
The <E> is the declaration of a data type
parameter for the class

any legal identifier: Foo, AnyType, Element,
DataTypeThisListStores
Java style guide recommends terse identifiers

The value E stores will be filled in whenever
a programmer creates a new GenericList
GenericList<String> li =

new GenericList<>();

CS314 Generics 13

Modifications to GenericList
instance variable
private E[] myCon;

Parameters on
add, insert, remove, insertAll

Return type on
get

Changes to creation of internal storage
container
myCon = (E[]) new Object[DEFAULT_SIZE];

Constructor header does not change

Modifications to GenericList
Careful with the equals method

Recall type information is actually erased at
compile time.

At runtime not sure what data type of elements
are. (Unless we get into reflection.)

use of wildcard

rely on the elements equals methods

CS314 Generics 14

CS314 Generics 15

Using Generic Types
Back to Java's ArrayList

ArrayList list1 = new ArrayList();
still allowed, a "raw" ArrayList

works just like our first pass at GenericList

casting, lack of type safety

CS314 Generics 16

Using Generic Types
ArrayList<String> list2 =

new ArrayList<String>();

for list2 E stores String

list2.add("Isabelle");

System.out.println(
list2.get(0).charAt(2)); //ok

list2.add(new Rectangle());

// syntax error

CS314 Generics 17

Parameters and Generic Types
Old version

//pre: all elements of li are Strings

public void printFirstChar(ArrayList li){

New version
//pre: none
public void printFirstChar(ArrayList<String> li){

Elsewhere
ArrayList<String> list3 = new ArrayList<String>();

printFirstChar(list3); // ok

ArrayList<Integer> list4 = new ArrayList<Integer>();

printFirstChar(list4); // syntax error

CS314 Generics 18

Generic Types and Subclasses
ArrayList<Shape> list5 =

new ArrayList<Shape>();

list5.add(new Rectangle());

list5.add(new Square());

list5.add(new Circle());

// all okay

list5 can store Shape objects and any
descendants of Shape

Topic 7
Interfaces

I once attended a Java user group meeting where James Gosling (one
of Java's creators) was the featured speaker. During the memorable
Q&A session, someone asked him: "If you could do Java over again,
what would you change?" "I'd leave out classes," he replied. After
the laughter died down, he explained that the real problem wasn't
classes per se, but rather implementation inheritance (the extends
relationship). Interface inheritance (the implements relationship)
is preferable.

- Allen Holub

Clicker 1
How many sorts do you want to have to write?

CS314 Interfaces

public static void selSort(double[] data) {
for (int i = 0; i < data.length; i++) {

int small = i;
for(int j = i + 1; j < data.length; j++) {

if (data[j] < data[small])

small = j;
}
double temp = data[i];

data[i] = data[small];
data[small] = temp;

}
}

A. 0
B. 1
C. 2
D. 3
E. >= 4

CS314 Interfaces 3

Why interfaces?
Interfaces allow the creation of abstract types

"A set of data values and associated operations that are
precisely specified independent of any particular
implementation. "

multiple implementations allowed

Interfaces allow a data type to be specified without
worrying about the implementation

do design first

What will this data type do?

separation of concerns.

allow us to create generic algorithms

Interfaces
public interface List<E> {

No constructors

No instance variables

abstract instance methods
public void add(E val);

default instance methods

static methods

class constants (prefer enums)
public static final int DEFAULT_CAP = 10;

an interface can (but does not have to)
extends other interfaces

CS314 Interfaces 5

Implementing Interfaces
In Java, a class inherits (extends) exactly

A class can implement as many interfaces as it likes
public class ArrayList implements List,
Serializable

A class that implements an interface must
provide implementations of all non default
method declared in the interface
or the class must be abstract

interfaces can extend other interfaces
multiple in fact, unlike Java classes

CS314 Interfaces 6

The Comparable Interface
The Java Standard Library
contains a number of interfaces

names are italicized in the
class listing

One of the most important
interfaces is the Comparable
interface

CS314 Interfaces 7

Comparable Interface

compareTo must return
an int <0 if the calling object is less than the parameter,

0 if they are equal

an int >0 if the calling object is greater than the
parameter other

compareTo should be consistent with equals
but this isn't required.

package java.lang;

public interface Comparable<T> {
public int compareTo(T other);

}

Interfaces
"Use interfaces to ensure a class has
methods that other classes or methods will
use." (In other words, clients of your class.)

Anthony, Spring 2013

The other classes or methods may already be
written.

The other methods or classes use interface
type for the parameters of methods.

POLYMORPHISM
old code using new code

CS314 Interfaces 8

Clicker Question 2
What is output by the following code?
Comparable c1 = new Comparable();
Comparable c2 = new Comparable();
System.out.println(c1.compareTo(c2));

A. A value < 0

B. 0

C. A value > 0

D. Unknown until program run

E. Compile error

CS314 Interfaces 9 CS314 Interfaces 10

Example compareTo
Suppose we have a class to
model playing cards

Ace of Spades, King of Hearts,
Two of Clubs

each card has a suit and a
value, represented by ints
this version of compareTo will
compare values first and then
break ties with suits

CS314 Interfaces 11

compareTo in a Card class

public class Card implements Comparable<Card> {

public int compareTo(Card otherCard) {
return this.rank - other.rank;

}
// other methods not shown

}

Assume ints for ranks (2, 3, 4, 5, 6,...) and suits (0 is
clubs, 1 is diamonds, 2 is hearts, 3 is spades).

CS314 Interfaces 12

Interfaces and Polymorphism
Interfaces may be used as the data type
for object variables

Can refer to any objects that implement the
interface or descendants
Assume Card implements Comparable

Card c = new Card();
Comparable comp1 = new Card();
Comparable comp2 = c;

Clicker Question 3
Which of the following lines of code causes a
syntax error?

Comparable c1; // A
c1 = "Ann"; // B
Comparable c2 = "Kelly"; // C
int x = c2.compareTo(c1); // D
// E No syntax errors.

// what is x after statement?

CS314 Interfaces 13

Why Make More Work?
Why bother implementing an interface such
as Comparable

objects can use method that expect an interface type

Example if I implement Comparable:
Arrays.sort(Object[] a)

public static void sort(Object[] a)

All elements in the array must implement the
Comparable interface. Furthermore, all elements in
the array must be mutually comparable

objects of my type can be stored in data
structures that accept Comparables

CS314 Interfaces 14

CS314 Interfaces 15

A List Interface
What if we wanted to specify the operations
for a List, but no implementation?

Allow for multiple, different implementations.

Provides a way of creating abstractions.
a central idea of computer science and
programming.

specify "what" without specifying "how"

"Abstraction is a mechanism and practice to
reduce and factor out details so that one can
focus on a few concepts at a time. "

CS314 Interfaces 16

List Interface
public interface List <E> {

public void add(E val);

public int size();

public E get(int location);

public void insert(int location, E val);
public E remove(int location);

}

One Sort

CS314 Interfaces 17

public static void sort(Comparable[] data) {

final int LIMIT = data.length 1;
for(int i = 0; i < LIMIT; i++) {

int small = i;
for(int j = i + 1; j < data.length; j++) {

int d = data[j].compareTo(data[small]);

if (d < 0)

small = j;
}
Comparable temp = data[i];

data[i] = data[small];
data[small] = temp;

} // end of i loop
}

1

Topic 8
Iterators

"First things first, but not necessarily
in that order "

-Dr. Who

CS314
Iterators

2

Iterators
ArrayList is part of the Java Collections
Framework

Collection is an interface that specifies the
basic operations every collection (data
structure) shall have

Sets, Maps, Graphs

How to access all the items in a Collection
with no specified order?

CS314
Iterators

3

Iterator Interface
An iterator object is a "one shot" object

it is designed to go through all the
elements of a Collection once
if you want to go through the
elements of a Collection again you
have to get another iterator object

Iterators are obtained by calling
a method from the Collection

CS314
Iterators

4

Iterator Iterface Methods
The Iterator interface 3 methods we will use:
boolean hasNext()
//returns true if this iteration has more elements

E next()
//returns the next element in this iteration
//pre: hastNext()

void remove()
/*Removes from the underlying collection the last element

returned by the iterator.
pre: This method can be called only once per call to next.
After calling, must call next again before calling remove
again.

*/

Clicker 1
Which of the following produces a syntax error?

ArrayList<String> list = new ArrayList<>();
Iterator<String> it1 = new Iterator(); // I
Iterator<String> it2 = new Iterator(list); // II
Iterator<String> it3 = list.iterator(); // III

A. I
B. II
C. III
D. I and II
E. II and III

CS314
Iterators

5 CS314
Iterators

6

Iterator
Imagine a fence made up of fence posts and
rail sections

fenceposts

rails

CS314
Iterators

7

Fence Analogy
The iterator lives on the fence posts

The data in the collection are the rails

Iterator created at the far left post

As long as a rail exists to the right of the
Iterator, hasNext() is true

iterator object

CS314
Iterators

8

Fence Analogy
ArrayList<String> names = new ArrayList<>();
names.add("Jan");
names.add("Levi");
names.add("Tom");
names.add("Jose");
Iterator<String> it = names.iterator();
int i = 0;

"Jan" "Levi" "Tom" "Jose"

CS314
Iterators

9

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 1, prints out Jan

"Jan" "Levi" "Tom" "Jose"

first call to next moves iterator to
next post and returns "Jan"

CS314
Iterators

10

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 2, prints out Levi

"Jan" "Levi" "Tom" "Jose"

CS314
Iterators

11

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 3, prints out Tom

"Jan" "Levi" "Tom" "Jose"

CS314
Iterators

12

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 4, prints out Jose

"Jan" "Levi" "Tom" "Jose"

CS314
Iterators

13

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// call to hasNext returns false

// while loop stops

"Jan" "Levi" "Tom" "Jose"

CS314
Iterators

14

Typical Iterator Pattern
public void printAll(Collection<String> col) {

Iterator<String> it = col.iterator();
while (it.hasNext()) {

String temp = it.next();

System.out.println(temp);

}

}

for (String temp : col) {

System.out.println(temp);

}

Clicker Question 2
What is output by the following code?

ArrayList<Integer> list = new ArrayList<>();

list.add(3);

list.add(3);

list.add(5);

Iterator<Integer> it = list.iterator();

System.out.print(it.next() + " ");

System.out.print(it.next() + " ");

System.out.print(it.next());

A. 3 B. 3 5 C. 3 3 5

D. 3 3 E. 3 3 then a runtime error

15 CS314
Iterators

16

remove method
An Iterator can be used to remove things from
the Collection

Can only be called once per call to next()
public void removeWordsOfLength(int len) {

Iterator<String> it = myList.iterator

while(it.hasNext()) {
String temp = it.next();

if (temp.length() == len) {
it.remove();

}

}

}
// original list = ["dog", "cat", "hat", "sat"]

// resulting list after removeWordsOfLength(3) ?

17

Clicker 3
public void printTarget(Collection<String>

names, int len) {

Iterator<String> it = names.iterator();

while(it.hasNext())

if(it.next().length() == len)

System.out.println(it.next());

}
Given names = ["Jan", "Ivan", "Tom", "George"] and len = 3 what is output

by the printTarget method?

A. Jan Ivan Tom George

B. Jan Tom

C. Ivan George

D. No output due to syntax error

E. No output due to runtime error CS314
Iterators

18

The Iterable Interface
A related interface is Iterable
The method of interest to us in the interface:
public Iterator<T> iterator()

Why?
Anything that implements the Iterable
interface can be used in the for each loop.
ArrayList<Integer> list;
//code to create and fill list
int total = 0;
for (int x : list) {

total += x;
}

CS314
Iterators

19

Iterable
If you simply want to go through all the
elements of a Collection (or Iterable thing)
use the for each loop

hides creation of the Iterator

public void printAllOfLength(ArrayList<String> names,
int len){

//pre: names != null, names only contains Strings
//post: print out all elements of names equal in
// length to len
for (String s : names)

if (s.length() == len)
System.out.println(s);

}

CS314
Iterators

20

Implementing an Iterator
Implement an Iterator for our GenericList
class

Nested Classes

Inner Classes

Example of encapsulation

checking precondition on remove

does our GenricList need an Iterator?

Madilyn L. 2019

CS314
Iterators

21

Comodification
If a Collection (ArrayList) is changed
while an iteration via an iterator is in progress
an Exception will be thrown the next time the
next() or remove() methods are called
via the iterator

ArrayList<String> names = new ArrayList<>();

names.add("Jan");

Iterator<String> it = names.iterator();

names.add("Andy");

it.next(); // exception occurs here

1

Topic 9
Using Maps

"He's off the map!"
-Stan (Mark Ruffalo) Eternal Sunshine of the
Spotless Mind

Data Structures
More than arrays and lists

Write a program to determine the frequency
of all the "words" in a file.

Maps 2CS 314

Performance using ArrayList

Maps 3

Title Size
(kb)

Total
Words

Distinct
Words

Time
(sec)

small sample 0.6 89 25 0.001
2BR02B 34 5,638 1,975 0.051
Alice in
Wonderland

120 29,460 6,017 0.741

Adventures of
Sherlock Holmes

581 107,533 15,213 4.144

2008 CIA Factbook 10,030 1,330,100 74,042 173.000

CS 314

Order?
Express change of value as factor of previous file

Maps 4

Title Size Total
Words

Distinct
Words

Time

small sample 0.6 89 25 0.001
2BR02B 57x 63x 79x 51x
Alice in
Wonderland

3.5x 5.2x 3.0x 14.5x

Adventures of
Sherlock Holmes

4.8x 3.7x 2.5x 6.0x

2008 CIA Factbook 17x 12.3x 5x 42x

O(Total Words * Distinct Words) ??

CS 314

Clicker 1
Given 10 seconds for the 2008 CIA Factbook
with 1,330,100 total words and 74,042
distinct words, how long for 1,000x total
words and 100x distinct words?

A. an hour

B. a day

C. a week

D. a month

E. half a year

Maps 5CS 314

Why So Slow??
Write a contains method for an array based list

public boolean indexOf(Object o) {

Maps 6CS 314

CS 314 Maps 7

A Faster Way - Maps
Also known as:

table, search table, dictionary, associative array, or
associative container

A data structure optimized for a very specific kind
of search / access

In a map we access by asking "give me the value
associated with this key."

CS 314 Maps 8

Keys and Values
Dictionary Analogy:

The key in a dictionary is a word:
foo
The value in a dictionary is the definition:
First on the standard list of metasyntactic
variables used in syntax examples

A key and its associated value form a pair
that is stored in a map
To retrieve a value the key for that value
must be supplied

A List can be viewed as a Map with integer keys

CS 314 Maps 9

More on Keys and Values
Keys must be unique, meaning a given key
can only represent one value

but one value may be represented by multiple
keys

like synonyms in the dictionary.
Example:
factor: n.See coefficient of X

factor is a key associated with the same value
(definition) as the key coefficient of X

Clicker 2
Is it required that the keys and values of a
map be the same data type?

A. No

B. Yes

C. It Depends

CS 314 Maps 10

Map <String, List<String>>

CS 314 Maps 11

Movie Characters

Wizard of Oz Dorothy, Toto, Scarecrow, Tin
Man, Cowardly Lion

Iron Man Tony Stark, Pepper Potts, Phil
Coulson, Obadiah Stane

Pride and
Prejudice

Elizabeth Bennet, Jane Bennet,
Mr. Darcy, Mr. Bingley

The Avengers Tony Stark, Pepper Potts, Steve
Rogers, Bruce Banner, Phil Coulson

Sense and
Sensibility

Elinor Dashwood, Marianne
Dashwood, Edward Ferrars, John
Willoughby, Colonel Brandon CS 314 Maps 12

The Map<K, V> Interface in Java

void clear()
Removes all mappings from this map (optional operation).

boolean containsKey(Object key)
Returns true if this map contains a mapping for the
specified key.

boolean containsValue(Object value)
Returns true if this map maps one or more keys to the
specified value.

Set<K> keySet()
Returns a Set view of the keys contained in this map.

CS 314 Maps 13

The Map Interface Continued
V get(Object key)

Returns the value to which this map maps the
specified key. Returns null if key not present.

boolean isEmpty()
Returns true if this map contains no key-value
mappings.

V put(K key, V value)
Associates the specified value with the specified
key in this map

CS 314 Maps 14

The Map Interface Continued
V remove(Object key)
Removes the mapping for this key from this map
if it is present

int size()
Returns the number of key-value mappings in
this map.

Collection<V> values()
Returns a collection view of the values contained
in this map.

Results with HashMap

Maps 15

Title Size
(kb)

Total
Words

Distinct
Words

Time
List

Time
Map

small sample 0.6 89 25 0.001 0.0008

2BR02B 34 5,638 1,975 0.051 0.0140

Alice in
Wonderland

120 29,460 6,017 0.741 0.0720

Adventures of
Sherlock Holmes

581 107,533 15,213 4.144 0.2500

2008 CIA Factbook 10,030 1,330,100 74,042 173.000 4.0000

CS 314

Order?

Maps 16

Title Size Total
Words

Distinct
Words

Time
List

Time
Map

small sample 0.6 89 25 0.001 0.0008

2BR02B 57x 63x 79x 51x 18x
Alice in
Wonderland

3.5x 5.2x 3.0x 14.5x 5x

Adventures of
Sherlock Holmes

4.8x 3.7x 2.5x 5.6x 3.5x

2008 CIA
Factbook

17x 12.3x 5x 42x 16x

O(Total Words)?

CS 314

1

Topic 10
Abstract Classes

abstract, rather than in

- Statue of Biologist
Louis Agassiz that fell from
a ledge on the Stanford
Quad during the 1906
San Francisco earthquake.

Back to the Monopoly Property Example

There are properties on a
monopoly board

Railroads, Utilities, and Streets are
kinds of properties

Property

Street Railroad Utility

A getRent Behavior
One behavior we want in Property

is the getRent method

problem: How do I get the rent of

CS314 Abstract Classes 3 CS314 Abstract Classes 4

The Property class
public class Property {

private int cost;
private String name;

public int getRent() {
return hmmmmm??????;

}

get the rent if all we know is it is a Property.

CS314 Abstract Classes 5

Potential Solutions
1. Just leave it for the sub classes.

Have each sub class define getRent()

2. Define getRent() in Property and simply
return -1.

Sub classes override the method with more
meaningful behavior.

CS314 Abstract Classes 6

Leave it to the Sub - Classes
// no getRent() in Property
// Railroad and Utility DO have getRent() methods

public void printRents(Property[] props) {
for (Property p : props)

System.out.println(p.getRent());

}

Property[] props = new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

Clicker 1 - What is result of above code?
A. 200150 B. different every time
C. Syntax error D. Class Cast Exception
E. Null Pointer Exception

CS314 Abstract Classes 7

"Fix" by Casting
// no getRent() in Property
public void printRents(Property[] props) {

for (Property p : props) {
if (p instanceof Railroad)

System.out.println(((Railroad) p).getRent());
else if (p instanceof Utility)

System.out.println(((Utility) p).getRent());
else if (p instanceof Street)

System.out.println(((Street) p).getRent())
} // GACK!!!!

}
Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?
CS314 Abstract Classes 8

Fix with Placeholder Return
// getRent() in Property returns -1

public void printRents(Property[] props) {
for (Property p : props)

System.out.println(p.getRent());
}

Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

getRent()?

Is that a good answer?

CS314 Abstract Classes 9

A Better Fix
We know we want to be able to get the rent
of objects that are instances of Property

if all we know is it a Property

Make getRent an abstract method

Java keyword

CS314 Abstract Classes 10

Making getRent Abstract
public class Property {

private int cost;
private String name;

public abstract int getRent();
// I know I want it.

}
Methods that are declared abstract have no body
an undefined behavior.

All non-default methods in a Java interface are
abstract.

Problems with Abstract Methods

If things can go wrong with a tool, provide
safeguards to prevent that from happening.

Given getRent() is now an abstract method
what is wrong with the following code?

Property p = new Property();
System.out.println(p.getRent());

CS314 Abstract Classes 12

Undefined Behavior = Bad
Not good to have undefined behaviors

If a class has 1 or more abstract methods,
the class must also be declared abstract.

version of Property shown would cause a
compile error

Even if a class has zero abstract methods a
programmer can still choose to make it
abstract

if it models some abstract thing

Abstract Classes Safety
1. A class with one or more abstract methods must be

declared abstract.
- Syntax error if not done.
- Can still decide to make class abstract even if no
abstract methods.

2. Objects of an abstract type cannot be instantiated.
- Just like interfaces
- Can still declare variables of this type

3. A subclass must implement all inherited abstract
methods or be abstract itself.

CS314 Abstract Classes 13 CS314 Abstract Classes 14

Abstract Classes
public abstract class Property {

private int cost;
private String name;

public abstract double getRent();
// I know I want it.

}
// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be called
Property s = new Property(1, 2);
//syntax error

CS314 Abstract Classes 15

Abstract Classes

objects where the lowest or most specific
class type is an abstract class

Prevents having an object with an undefined
behavior

Why would you still want to have
constructors in an abstract class?

Object variables of classes that are abstract
types may still be declared
Property p; //okay

CS314 Abstract Classes 16

Sub Classes of Abstract Classes
Classes that extend an abstract class must
provided a working version of any and all
abstract methods from the parent class

or they must be declared to be abstract as well

could still decide to keep a class abstract
regardless of status of abstract methods

CS314 Abstract Classes 17

Implementing getRent()

public class Railroad extends Property {

private static int[] rents
= {25, 50, 100, 200};

private int numOtherRailroadsOwned;

public double getRent() {
return rents[numOtherRailroadsOwned];}

// other methods not shown
}

CS314 Abstract Classes 18

A Utility Class

CS314 Abstract Classes 19

Polymorphism in Action
// getRent() in Property is abstract

public void printRents(Property[] props) {
for (Property p : props)

System.out.println(p.getRent());
}

Add the Street class. What needs to change in
printRents method?

Inheritance is can be described as new code using
old code.

Koan of Polymorphism: Polymorphism can be
described as old code reusing new code.

CS314 Abstract Classes 20

Comparable in Property
public abstract class Property

implements Comparable<Property> {
private int cost;
private String name;

public abstract int getRent();

public int compareTo(Property other) {
return this.getRent()

otherProperty.getRent();
}

}

Back to Lists
We suggested having a list interface

public interface IList<E> extends Iterable<E> {

public void add(E value);

public int size();

public E get(int location);

public E remove(int location);

public boolean contains(E value);

public void addAll(IList<E> other);

public boolean containsAll(IList<E> other);

}

CS314 Abstract Classes 21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal
implementation interface

- Create classes that extend the skeletal
interface
public boolean contains(E val) {

for (E e : this)
if val.equals(e)

return true;
return false

CS314 Abstract Classes 22

1

Topic 11
Linked Lists

"All the kids who did great in high school writing
pong games in BASIC for their Apple II would get to
college, take CompSci 101, a data structures
course, and when they hit the pointers business their
brains would just totally explode, and the next thing
you knew, they were majoring in Political Science
because law school seemed like a better idea."

-Joel Spolsky

Thanks to Don Slater of CMU for use of his slides.

Sam G. - Fall 2023

CS314
Linked Lists

2

Clicker 1
What is output by the following code?

ArrayList<Integer> a1 = new ArrayList<>();

ArrayList<Integer> a2 = new ArrayList<>();

a1.add(12);

a2.add(12);

System.out.println(a1 == a2);

A. false

B. true

C. No output due to syntax error
D. No output due to runtime error
E. Varies from one run of the program to the next

CS314
Linked Lists

3 CS314
Linked Lists

4

Dynamic Data Structures
Dynamic data structures

They grow and shrink one element at a time,
normally without some of the inefficiencies of
arrays
as opposed to a static container such as an array

Big O of Array Manipulations
Access the kth element
Add or delete an element in the middle of the
array while maintaining relative order
adding element at the end of array? space
avail? no space avail?
add element at beginning of an array

Linked Lists
5

Object References
Recall that an object reference is a variable
that stores the address of an object

A reference can also be called a pointer

They are often depicted graphically:

student
John Smith

40725
3.57

CS314
Linked Lists

6

References as Links
Object references can be used to create
links between objects

Suppose a Student class contained a
reference to another Student object

John Smith
40725
3.57

Jane Jones
58821
3.72

CS314

Linked Lists
7

References as Links
References can be used to create a variety
of linked structures, such as a linked list:

studentList

CS314 CS314
Linked Lists

8

Linked Lists
A linear collection of self-referential objects,
typically called nodes, connected by other links

linear: for every node in the list, there is one and only one node
that precedes it (except for possibly the first node, which may
have no predecessor,) and there is one and only one node that
succeeds it, (except for possibly the last node, which may have
no successor)

self-referential: a node that has the ability to refer to another
node of the same type, or even to refer to itself

node: contains data of any type, including a reference to another
node of the same data type, or to nodes of different data types

Usually a list will have a beginning and an end; the first element
in the list is accessed by a reference to that class, and the last
node in the list will have a reference that is set to null

CS314
Linked Lists

9

Linked lists are dynamic, they can grow or shrink
as necessary

Linked lists are non-contiguous; the logical
sequence of items in the structure is decoupled
from any physical ordering in memory

Advantages of linked lists

CS314
Linked Lists

10

Nodes and Lists
A different way of implementing a list

Each element of a Linked List is a separate
Node object.

Each Node tracks a single piece of data plus
a reference (pointer) to the next

Create a new Node very time we add
something to the List

Remove nodes when item removed from list
and allow garbage collector to reclaim that
memory

CS314
Linked Lists

11

A Node Class
public class Node<E> {

private E myData;
private Node<E> myNext;

public Node()
{ myData = null; myNext = null; }

public Node(E data, Node<E> next)
{ myData = data; myNext = next; }

public E getData()
{ return myData; }

public Node<E> getNext()
{ return myNext; }

public void setData(E data)
{ myData = data; }

public void setNext(Node<E> next)
{ myNext = next; }

}

CS314
Linked Lists

12

One Implementation of a Linked List

The Nodes show on the previous slide are
singly linked

a node refers only to the next node in the
structure
it is also possible to have doubly linked nodes.
The node has a reference to the next node in the
structure and the previous node in the structure
as well

How is the end of the list indicated
myNext = null for last node
a separate dummy node class / object

CS314
Linked Lists

13

A Linked List Implementation
public class LinkedList<E> implements IList<E>

private Node<E> head;
private Node<E> tail;
private int size;

public LinkedList(){
head = null;
tail = null;
size = 0;

}
}
LinkedList<String> list = new LinkedList<String>();

LinkedList

myHead iMySize

myTail

null

null

0

CS314
Linked Lists

14

Writing Methods
When trying to code methods for Linked
Lists draw pictures!

If you don't draw pictures of what you are trying
to do it is very easy to make mistakes!

CS314
Linked Lists

15

add method
add to the end of list

special case if empty

steps on following slides

public void add(E obj)

CS314
Linked Lists

16

Add Element - List Empty (Before)

head tail size

null null 0

Object

item

CS314
Linked Lists

17

Add Element - List Empty (After)

head tail size

1

String
Node

myData myNext

null

CS314
Linked Lists

18

Add Element - List Not Empty (Before)

1

String

Node

myData myNext

null

head tail size

String
item

CS314
Linked Lists

19

Add Element - List Not Empty (After)

2

String

Node

myData myNext

head tail size

String

Node

myData myNext

null

CS314
Linked Lists

20

Code for default add
public void add(E obj)

Clicker 2
What is the worst case Big O for adding to
the end of an array based list and our
LinkedList314 class? The lists already
contain N items.

Array based Linked

A. O(1) O(1)

B. O(N) O(N)

C. O(logN) O(1)

D. O(1) O(N)

E. O(N) O(1)
21

Contains method
Implement a contains method for our Linked
List class

public boolean contains(E val) // val != null

CS314
Linked Lists

22

CS314
Linked Lists

23

Code for addFront
add to front of list

public void addFront(E obj)

How does this compare to adding at the front
of an array based list?

Clicker 3
What is the Big O for adding to the front of
an array based list and a linked list? The lists
already contain N items.

Array based Linked

A. O(1) O(1)

B. O(N) O(1)

C. O(logN) O(1)

D. O(1) O(N)

E. O(N) O(N)

CS314
Linked Lists

24

CS314
Linked Lists

25

Code for Insert
public void insert(int pos, E obj)

Must be careful not to break the chain!

Where do we need to go?

Special cases?

Clicker 4
What is the Big O for inserting an element
into the middle of an array based list and into
the middle of a linked list? Each list already
contains N items.

Array based Linked

A. O(1) O(1)

B. O(1) O(N)

C. O(N) O(1)

D. O(N) O(N)

E. O(N) O(logN)
CS314

Linked Lists
26

Clicker Question 5
What is the Big O for getting an element
based on position from an array based list
and from a linked list? Each list contains N
items. In other words E get(int pos)

Array based Linked

A. O(1) O(1)

B. O(1) O(N)

C. O(N) O(1)

D. O(logN) O(N)

E. O(N) O(N)
Linked Lists

27 CS314
Linked Lists

28

Code for get
public E get(int pos)

The downside of Linked Lists

CS314
Linked Lists

29

Code for remove
public E remove(int pos)

Clicker 6
What is the order to remove the last element
of a singly linked list with references to the
first and last nodes of the linked structure of
nodes?
The list contains N elements

A. O(1)

B. O(logN)

C. O(N^0.5)

D. O(N)

E. O(NlogN))
CS314

Linked Lists
30

CS314
Linked Lists

31

Why Use Linked List
What operations with a Linked List faster
than the version from ArrayList?

CS314
Linked Lists

32

Clicker 7 - Getting All Elements in
Order From a Linked List

What is the Order (Big O) of the following code?
LinkedList314<Integer> list;

list = new LinkedList314<Integer>();
// code to fill list with N elements
int total = 0;

//Big O of following code?
for(int i = 0; i < list.size(); i++)

total += list.get(i);

A. O(N) B. O(2N) C. O(NlogN)

D. O(N2) E. O(N3)

Iterators to the Rescue

CS314
Linked Lists

33 CS314
Linked Lists

34

Other Possible Features of
Linked Lists

Doubly Linked

Circular

Dummy Nodes for first and last node in list
public class DLNode<E> {

private E myData;
private DLNode<E> myNext;
private DLNode<E> myPrevious;

}

CS314
Linked Lists

35

Dummy Nodes
Use of Dummy Nodes for a Doubly Linked
List removes most special cases

Also could make the Double Linked List
circular

CS314
Linked Lists

36

Doubly Linked List add

public void add(E obj)

CS314
Linked Lists

37

Insert for Doubly Linked List
public void insert(int pos, E obj)

Topic 12
Introduction to Recursion

"To a man with a hammer,
everything looks like a nail"

-Mark Twain

CS314 Recursion 2

Underneath the Hood.

CS314 Recursion 3

The Program Stack
When you invoke a method in your code
what happens when that method is done?
public class Mice {

public static void main(String[] args) {
int x = 37;
int y = 12;
method1(x, y);
int z = 73;
int m1 = method1(z, x);
method2(x, x);

}

// method1 and method2
// on next slide

CS314 Recursion 4

method1 and method2
// in class Mice
public static int method1(int a, int b) {

int r = 0;
if (b != 0) {

int x = a / b;
int y = a % b;
r = x + y;

}
return r;

}
public static void method2(int x, int y) {

x++;
y--;
int z = method1(y, x);
System.out.print(z);

}

CS314 Recursion 5

The Program Stack
When your program is run on a processor, the
commands are converted into another set of
instructions and assigned memory locations.

normally a great deal of expansion takes place

public static void main(String[] args) {
int x = 37; // 0
int y = 12; // 1
method1(x, y); // 2
int z = 73; // 3
int m1 = method1(z, x); // 4
method2(x, x); // 7

}
6

Basic CPU Operations
A CPU works via a fetch
command / execute command
loop and a program counter
Instructions stored in memory
(Instructions are data!)

What if the first instruction of the method1 is
stored at memory location 50?

int x = 37; // 0
int y = 12; // 1
method1(x, y); // 2
int z = 73; // 3
int m1 = method1(z, x); // 4
method2(x, x); // 5

CS314 Recursion 7

// in class Mice
public static int method1(int a, int b) {

int r = 0; // 51
if (b != 0) { // 52

int x = a / b; // 53
int y = a % b; // 54
r = x + y; // 55

}
return r; // 56

}
public static void method2(int x, int y) {

x++; // 60
y--; // 61
int z = method1(y, x); // 62
System.out.print(z); // 63

}
CS314 Recursion

8

Clicker 1 - The Program Stack

Instruction 3 is really saying jump to instruction
50 with parameters x and y
In general what happens when method1 finishes?

A. program ends B. goes to instruction 4

C. goes back to whatever method called it

int x = 37; // 1
int y = 12; // 2
method1(x, y); // 3
int z = 73; // 4
int m1 = method1(z, x); // 5
method2(x, x); // 6

CS314 Recursion 9

Activation Records and the
Program Stack

When a method is invoked all the relevant
information about the current method
(variables, values of variables, next line of
code to be executed) is placed in an
activation record

The activation record is pushed onto the
program stack

A stack is a data structure with a single
access point, the top.

CS314 Recursion 10

The Program Stack
Data may either be
added (pushed) or
removed (popped) from
a stack but it is always
from the top.

A stack of dishes

which dish do we have
easy access to?

top

Using Recursion

CS314 Recursion 12

A Problem
Write a method that determines how much
space is take up by the files in a directory

A directory can contain files and
directories

How many directories does our code have
to examine?

How would you add up the space taken
up by the files in a single directory

Hint: don't worry about any sub directories at
first

Clicker 2
How many levels of directories have to be
visited?

A. 0

B. 1

C. 8

D. Infinite

E. Unknown

CS314 Recursion 13 CS314 Recursion 14

Sample Directory Structure

scottm

cs314

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf
AB.pdf

Java File Class
File(String pathname) Creates a new
File instance by converting the given
pathname.
boolean isDirectory() Tests whether
the file denoted by this abstract pathname is
a directory.
File[] listFiles() Returns an array
of abstract pathnames denoting the files in
the directory denoted by this abstract
pathname.

CS314 Recursion 15 16

Code for getDirectorySpace()
// pre: dir is a directory and dir != null

public static long spaceUsed(File dir) {

if(dir == null || !dir.isDirectory())

throw new IllegalArgumentException();

long spaceUsed = 0;

File[] subFilesAndDirs = dir.listFiles();

if(subFilesAndDirs != null)

for(File sub : subFilesAndDirs)

if(sub != null)

if(sub.isFile()) // sub is a plain old file

spaceUsed += sub.length();

else if (sub.isDirectory())
// else sub is a directory

spaceUsed += spaceUsed(sub);

return spaceUsed;

}

Clicker 3
Is it possible to write a non recursive method
to determine space taken up by files in a
directory, including its subdirectories, and
their subdirectories, and their subdirectories,
and so forth?

A. No

B. Yes

C. It Depends

CS314 Recursion 17 CS314 Recursion 18

Iterative getDirectorySpace()
public long getDirectorySpace(File d) {
ArrayList<File> dirs = new ArrayList<>();
dirs.add(d);
long total = 0;
while (dirs.size() > 0) {

File temp = dirs.remove(dirs.size() 1);
File[] filesAndSubs = temp.listFiles();
if (filesAndSubs != null) {

for (File f : filesAndSubs) {
if (f != null) {

if (f.isFile())
total += f.length();

else if (f.isDirectory())
dirs.add(f);

}
}

}
return total;

}

Wisdom for Writing Recursive
Methods

CS314 Recursion 20

The 3 plus 1 rules of Recursion
1. Know when to stop

2. Decide how to take one step

3. Break the journey down into that step and a
smaller journey

4. Have faith

From Common Lisp: A Gentle
Introduction to
Symbolic Computation
by David Touretzky

CS314 Recursion 21

Writing Recursive Methods
Rules of Recursion

1. Base Case: Always have at least one case that
can be solved without using recursion

2. Make Progress: Any recursive call must
progress toward a base case.

3. "You gotta believe." Always assume that the
recursive call works. (Of course you will have to
design it and test it to see if it works or prove
that it always works.)

A recursive solution solves a small part of
the problem and leaves the rest of the
problem in the same form as the original

CS314 Recursion 22

N!
the classic first recursion problem / example

N!
5! = 5 * 4 * 3 * 2 * 1 = 120

int res = 1;
for(int i = 2; i <= n; i++)

res *= i;

CS314 Recursion 23

Factorial Recursively
Mathematical Definition of Factorial

for N >= 0, N! is:
0! = 1
N! = N * (N - 1)! (for N > 0)
The definition is recursive.
// pre n >= 0
public int fact(int n) {

if(n == 0)
return 1;

else
return n * fact(n-1);

} // return (n == 0) ? 1 : n * fact(n - 1);

CS314 Recursion 24

Tracing Fact With the
Program Stack

System.out.println(fact(4));

System.out.println(fact(4));top

CS314 Recursion 25

Calling fact with 4

System.out.println(fact(4));top

n 4

partial result = n * fact(n-1)

in method fact

CS314 Recursion 26

Calling fact with 3

System.out.println(fact(4));

top n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

CS314 Recursion 27

Calling fact with 2

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

CS314 Recursion 28

Calling fact with 1

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * fact(n-1)

in method fact

CS314 Recursion 29

Calling fact with 0 and returning 1

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * fact(n-1)

in method fact

n 0

returning 1 to whatever method called me

in method fact

CS314 Recursion 30

Returning 1 from fact(1)

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1
partial result = n * 1,
return 1 to whatever method called me

in method fact

CS314 Recursion 31

Returning 2 from fact(2)

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2 in method fact

partial result = 2 * 1,
return 2 to whatever method called me

CS314 Recursion 32

Returning 6 from fact(3)

System.out.println(fact(4));

top n 4

partial result = n * fact(n-1)

in method fact

n 3 in method fact

partial result = 3 * 2,
return 6 to whatever method called me

CS314 Recursion 33

Returning 24 from fact(4)

System.out.println(fact(4));top

n 4 in method fact
partial result = 4 * 6,
return 24 to whatever method called me

CS314 Recursion 34

Calling System.out.println

System.out.println(24);

top ??

Evaluating Recursive Methods

CS314 Recursion 36

Evaluating Recursive Methods
you must be able to evaluate recursive
methods

public static int mystery (int n){

if(n == 0)

return 2;
else

return 3 * mystery(n-1);

}

// what is returned by mystery(3)

CS314 Recursion 37

Evaluating Recursive Methods
Draw the program stack!

with practice you can see the result

m(3) = 3 * m(2) -> 3 * 18 = 54

m(2) = 3 * m(1) -> 3 * 6 = 18

m(1) = 3 * m(0) -> 3 * 2 = 6

m(0) = 2

-> 54

Clicker 4
What is returned by fact(-3) ?

A. 0

B. 1

C. Infinite loop

D. Syntax error

E. Runtime error
public static int fact(int n) {

if (n == 0) {

return 1;

} else {

return n * fact(n - 1);

}

} 38

CS314 Recursion 39

Evaluating Recursive Methods
What about multiple recursive calls?

public static int bar(int n){

if (n <= 0)

return 2;

else

return 3 + bar(n-1) + bar(n-2);

}

Clicker 5 - What does bar(4) return?

A. 2 B. 3 C. 12 D. 22 E. 37

CS314 Recursion 40

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + b(1) + b(0)

b(1) = 3 + b(0) + b(-1)

b(0) = 2

b(-1) = 2

CS314 Recursion 41

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + b(1) + b(0) //substitute in results

b(1) = 3 + 2 + 2 = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 42

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + 7 + 2 =12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 43

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + 12 + 7 = 22

b(2) = 12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 44

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + 22 + 12 = 37

b(3) = 22

b(2) = 12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 45

Recursion Practice
Write a method raiseToPower(int base,

int power)
//pre: power >= 0

Simple recursion (also called tail recursion)

CS314 Recursion 46

Finding the Maximum in an Array
public int max(int[] data) {

Helper method or create smaller arrays each
time

Clicker 6
When writing recursive methods what should
be done first?

A. Determine recursive case

B. Determine recursive step

C. Make a recursive call

D. Determine base case(s)

E. Determine the Big O

CS314 Recursion 47 CS314 Recursion 48

Your Meta Cognitive State
Remember we are learning to use a tool.

It is not a good tool for all problems.
In fact we will implement several algorithms and
methods where an iterative (looping without
recursion) solution would work just fine

After learning the mechanics and basics of
recursion the real skill is knowing what
problems or class of problems to apply it to

CS314 Recursion 49

Big O and Recursion
Determining the Big O of recursive methods
can be tricky.

A recurrence relation exits if the function is
defined recursively.

The T(N), actual running time, for N! is
recursive

T(N)fact = T(N-1)fact + O(1)

This turns out to be O(N)
There are N steps involved

CS314 Recursion 50

Common Recurrence Relations
T(N) = T(N/2) + O(1) -> O(logN)

binary search

T(N) = T(N-1) + O(1) -> O(N)
sequential search, factorial

T(N) = T(N/2) + T(N/2) + O(1) -> O(N),
tree traversal

T(N) = T(N-1) + O(N) -> O(N^2)
selection sort

T(N) = T(N/2) + T(N/2) + O(N) -> O(NlogN)
merge sort

T(N) = T(N-1) + T(N-1) + O(1) -> O(2^N)
Fibonacci

Topic 13
Recursive Backtracking

"In ancient times, before computers were invented,
alchemists studied the mystical properties of
numbers. Lacking computers, they had to rely on
dragons to do their work for them. The dragons
were clever beasts, but also lazy and bad-tempered.
The worst ones would sometimes burn their keeper
to a crisp with a single fiery belch. But most dragons
were merely uncooperative, as violence required too
much energy. This is the story of how Martin, an

outsmarting a lazy dragon."
- David S. Touretzky, Common Lisp: A Gentle Introduction to

Symbolic Computation

Devon: 2022 - 2023
CS314

Recursive Backtracking
2

Backtracking
Start

Success!

Success!

Failure

Problem space consists of states (nodes) and actions
(paths that lead to new states). When in a node can
can only see paths to connected nodes

If a node only leads to failure go back to its "parent"
node. Try other alternatives. If these all lead to failure
then more backtracking may be necessary.

Escaping a Maze
Which door should we take?

A view from above

CS314
Recursive Backtracking

3

Current
Room

Doors

Exit out there,

we hope

Escaping a Maze
Try door to the east

CS314
Recursive Backtracking

4

First
room

Doors

Exit out there,

we hope

Current
Room

A dead end!

Escaping a Maze
Back we go

CS314
Recursive Backtracking

5

Doors

Exit out there,

we hope

Current
Room

A dead end!

Escaping a Maze
What if we knew the exit was to the south?

CS314
Recursive Backtracking

6

Doors

Exit out there,
some where
to the south!

Current
Room

Escaping a Maze
Start over. What if we knew the exit was to
the south?

CS314
Recursive Backtracking

7

Doors

Exit out there,
some where
to the south!

Current
Room A dead end!

Escaping a Maze
What if we knew the exit was to the south?

CS314
Recursive Backtracking

8

Doors

Exit out there,
some where
to the south!

Current
Room

A dead end!

Escaping a Maze
What if we knew the exit was to the south?

CS314
Recursive Backtracking

9

Doors

Exit out there,
some where
to the south!

A dead end!

Escaping a Maze
What if we knew the exit was to the south?

CS314
Recursive Backtracking

10

Doors

Exit out there,
some where
to the south!

Current
Room

A dead end!

Escaping a Maze

CS314
Recursive Backtracking

11

Doors

Exit out there,
some where
to the south!

Current
Room

A dead end!

A dead end!

Escaping a Maze

CS314
Recursive Backtracking

12

Doors

Exit out there,
some where
to the south!

Current
Room

A dead end!

A dead end!

Escaping a Maze

CS314
Recursive Backtracking

13

Doors

Exit out there,
some where
to the south!

Current
Room

A dead end!

A dead end!

Escaping a Maze

CS314
Recursive Backtracking

14

Doors

Exit out there,
some where
to the south!

OUT!! A dead end!

A dead end!

CS314
Recursive Backtracking

15

Recursive Backtracking
Pseudo code for recursive backtracking

algorithms looking for a solution

If at a solution, report success
for (every possible choice from current state)

Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.
Report failure

CS314
Recursive Backtracking

16

Another Concrete Example
Sudoku

9 by 9 matrix with some
numbers filled in

all numbers must be between
1 and 9

Goal: Each row, each column,
and each mini matrix must
contain the numbers between
1 and 9 once each

no duplicates in rows, columns,
or mini matrices

CS314
Recursive Backtracking

17

Solving Sudoku Brute Force
A brute force algorithm is a
simple but generally
inefficient approach

Try all combinations until
you find one that works

but computers are fast

Then try and improve on
the brute force results

CS314
Recursive Backtracking

18

Solving Sudoku
Brute force Sudoku Soluton

if not open cells, solved

scan cells from left to right,
top to bottom for first open
cell

When an open cell is found
start cycling through digits 1
to 9.

When a digit is placed check
that the set up is legal

now solve the board

1

Clicker 1
After placing a number in a cell is the
remaining problem very similar to the original
problem?

A. No

B. Yes

CS314
Recursive Backtracking

19 CS314
Recursive Backtracking

20

Solving Sudoku Later Steps
1 1 2 1 2 4

1 2 4 8 1 2 4 8 9

uh oh!

CS314
Recursive Backtracking

21

Sudoku A Dead End
We have reached a dead end in our search

With the current set up none of the nine
digits work in the top right corner

1 2 4 8 9

CS314
Recursive Backtracking

22

Backing Up
When the search reaches a dead
end in backs up to the previous
cell it was trying to fill and goes
onto to the next digit

We would back up to the cell with
a 9 and that turns out to be a dead
end as well so we back up again

so the algorithm needs to remember
what digit to try next

Now in the cell with the 8. We try
and 9 and move forward again.

1 2 4 8 9

1 2 4 9

CS314
Recursive Backtracking

23

Characteristics of Brute Force
and Backtracking

Brute force algorithms are slow

The first pass attempts typically don't employ
a lot of logic

But, brute force algorithms are fairly easy to
implement as a first pass solution

many backtracking algorithms are brute force
algorithms

CS314
Recursive Backtracking

24

Key Insights
After trying placing a digit in a cell we want to solve
the new sudoku board

Isn't that a smaller (or simpler version) of the same
problem we started with?!?!?!?

After placing a number in a cell the we need to
remember the next number to try in case things
don't work out.

We need to know if things worked out (found a
solution) or they didn't, and if they didn't try the next
number

If we try all numbers and none of them work in our
cell we need to report back that things didn't work

Clicker 2
Grace 2019 Asked: When we reach the base
case in the solveSudoku method (9 x 9
board) and before we return true, how many
stack frames are on the program stack of the
solveSudoku method? Pick the closest
answer.

A. <= 9

B. 82

C. 819

D. 981

E. cannot determine 25 CS314
Recursive Backtracking

26

Recursive Backtracking
Problems such as Suduko can be solved
using recursive backtracking

recursive because later versions of the
problem are just slightly simpler versions of
the original

backtracking because we may have to try
different alternatives

CS314
Recursive Backtracking

27

Recursive Backtracking - Repeated

Pseudo code for recursive backtracking
algorithms looking for a solution

If at a solution, report success
for (every possible choice from current state)

Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.
Report failure

CS314
Recursive Backtracking

28

Goals of Backtracking
Possible goals

Find a path to success

Find all paths to success

Find the best path to success

Not all problems are exactly alike, and
finding one success node may not be the
end of the search

Start
Success!

Success!

CS314
Recursive Backtracking

29

The 8 N Queens Problem

CS314
Recursive Backtracking

30

The 8 Queens Problem
A classic chess puzzle

Place 8 queen pieces on a chess board so that
none of them can attack one another

CS314
Recursive Backtracking

31

The N Queens Problem
Place N Queens on an N by N chessboard so that
none of them can attack each other
Number of possible placements?
In 8 x 8
64 * 63 * 62 * 61 * 60 * 59 * 58 * 57

= 178,462, 987, 637, 760 / 8!
= 4,426,165,368

n choose k
How many ways can you choose k things from a

set of n items?
In this case there are 64 squares and we want to choose
8 of them to put queens on

Clicker 3
For a safe solution, how many queens can
be placed in a given column?

A. 0

B. 1

C. 2

D. 3

E. Any number

CS314
Recursive Backtracking

32

CS314
Recursive Backtracking

33

Reducing the Search Space
The previous calculation includes set ups like this
one

Includes lots of set ups with
multiple queens in the same
column
How many queens can there be
in one column?
Number of set ups
8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 16,777,216
We have reduced search space by two orders of
magnitude by applying some logic

Q
Q

Q
Q
Q

Q
Q

Q

Solving N Queens Approach

CS314
Recursive Backtracking

34

CS314
Recursive Backtracking

35

A Solution to 8 Queens
If number of queens is fixed and I realize there can't be
more than one queen per column I can iterate through the
rows for each column

for(int r0 = 0; r0 < 8; r0++){

board[r0][0] = 'q';
for(int r1 = 0; r1 < 8; r1++){

board[r1][1] = 'q';

for(int r2 = 0; r2 < 8; r2++){

board[r2][2] = 'q';

// a little later

for(int r7 = 0; r7 < 8; r7++){

board[r7][7] = 'q';
if(queensAreSafe(board))

printSolution(board);

board[r7][7] = ' '; //pick up queen
}
board[r6][6] = ' '; // pick up queen

CS314
Recursive Backtracking

36

N Queens
The problem with N queens is you don't
know how many for loops to write.

Do the problem recursively

Write recursive code with class and demo
show backtracking with breakpoint and
debugging option

CS314
Recursive Backtracking

37

Recursive Backtracking
You must practice!!!

Learn to recognize problems that fit the
pattern

Is a kickoff method needed?

All solutions or a solution?

Reporting results and acting on results

Minesweeper

CS314
Recursive Backtracking

38

Minesweeper Reveal
Algorithm

Minesweeper

click a cell
if bomb game over

if cell that has 1 or more bombs on border
then reveal the number of bombs that border cell

if a cell that has 0 bombs on border
then reveal that cell as a blank and click on the 8
surrounding cells

CS314
Recursive Backtracking

39 CS314
Recursive Backtracking

40

Another Backtracking Problem
A Simple Maze

Search maze until way
out is found. If no way
out possible report that.

CS314
Recursive Backtracking

41

The Local View

North

East
West

Behind me, to the South

is a door leading South

Which way do
I go to get

out?

CS314
Recursive Backtracking

42

Modified Backtracking
Algorithm for Maze

If the current square is outside, return TRUE to indicate that a solution has been
found.

If the current square is marked, return FALSE to indicate that this path has been
tried.

Mark the current square.
for (each of the four compass directions)
{ if (this direction is not blocked by a wall)

{ Move one step in the indicated direction from the current square.
Try to solve the maze from there by making a recursive call.
If this call shows the maze to be solvable, return TRUE to indicate that

fact.
}

}
Unmark the current square.

Return FALSE to indicate that none of the four directions led to a solution.

CS314
Recursive Backtracking

43

Backtracking in Action

The crucial part of the
algorithm is the for loop
that takes us through the
alternatives from the current
square. Here we have moved
to the North.

for (dir = North; dir <= West; dir++)
{ if (!WallExists(pt, dir))

{if (SolveMaze(AdjacentPoint(pt, dir)))
return(TRUE);

}
CS314

Recursive Backtracking
44

Backtracking in Action

Here we have moved
North again, but there is
a wall to the North .
East is also
blocked, so we try South.
That call discovers that
the square is marked, so
it just returns.

CS314
Recursive Backtracking

45

So the next move we
can make is West.

Where is this leading?

CS314
Recursive Backtracking

46

This path reaches
a dead end.

Time to backtrack!

Remember the
program stack!

CS314
Recursive Backtracking

47

The recursive calls
end and return until
we find
ourselves back here.

CS314
Recursive Backtracking

48

And now we try

South

CS314
Recursive Backtracking

49

Path Eventually Found

CS314
Recursive Backtracking

50

More Backtracking Problems

CS314
Recursive Backtracking

51

Other Backtracking Problems
Knight's Tour

Regular Expressions

Knapsack problem / Exhaustive Search
Filling a knapsack. Given a choice of items with
various weights and a limited carrying capacity
find the optimal load out. 50 lb. knapsack. items
are 1 40 lb, 1 32 lb. 2 22 lbs, 1 15 lb, 1 5 lb. A
greedy algorithm would choose the 40 lb item
first. Then the 5 lb. Load out = 45lb. Exhaustive
search 22 + 22 + 5 = 49.

CS314
Recursive Backtracking

52

The CD problem
We want to put songs on a Compact Disc.
650MB CD and a bunch of songs of various
sizes.

If there are no more songs to consider return result

else{
Consider the next song in the list.

Try not adding it to the CD so far and use recursion to evaluate best
without it.

Try adding it to the CD, and use recursion to evaluate best with it
Whichever is better is returned as absolute best from here

}

CS314
Recursive Backtracking

53

Another Backtracking Problem
Airlines give out frequent flier miles as a way to get
people to always fly on their airline.

Airlines also have partner airlines. Assume if you
have miles on one airline you can redeem those
miles on any of its partners.

Further assume if you can redeem miles on a
partner airline you can redeem miles on any of its
partners and so forth...

Airlines don't usually allow this sort of thing.

Given a list of airlines and each airlines partners
determine if it is possible to redeem miles on a
given airline A on another airline B.

CS314
Recursive Backtracking

54

Airline List Part 1
Delta

partners: Air Canada, Aero Mexico, OceanAir

United
partners: Aria, Lufthansa, OceanAir, Quantas, British Airways

Northwest
partners: Air Alaska, BMI, Avolar, EVA Air

Canjet
partners: Girjet

Air Canda
partners: Areo Mexico, Delta, Air Alaska

Aero Mexico
partners: Delta, Air Canda, British Airways

CS314
Recursive Backtracking

55

Airline List - Part 2
Ocean Air

partners: Delta, United, Quantas, Avolar

AlohaAir
partners: Quantas

Aria
partners: United, Lufthansa

Lufthansa
partners: United, Aria, EVA Air

Quantas
partners: United, OceanAir, AlohaAir

BMI
partners: Northwest, Avolar

Maxair
partners: Southwest, Girjet

CS314
Recursive Backtracking

56

Airline List - Part 3
Girjet

partners: Southwest, Canjet, Maxair

British Airways
partners: United, Aero Mexico

Air Alaska
partners: Northwest, Air Canada

Avolar
partners: Northwest, Ocean Air, BMI

EVA Air
partners: Northwest, Luftansa

Southwest
partners: Girjet, Maxair

CS314
Recursive Backtracking

57

Problem Example
If I have miles on Northwest can I redeem them on Aria?
Partial graph:

Northwest

BMI

Air Alaska

EVA Air

Avolar

Ocean Air

Topic 14
Searching and Simple Sorts

"There's nothing in your head the
sorting hat can't see. So try me
on and I will tell you where you
ought to be."
-The Sorting Hat, Harry Potter
and the Sorcerer's Stone

CS314 Searching and Simple Sorts 2

Sorting and Searching
Fundamental problems in computer science
and programming

Sorting done to make searching easier

Multiple different algorithms to solve the
same problem

How do we know which algorithm is "better"?

Look at searching first

Examples use arrays of ints to illustrate
algorithms

Searching

CS314 Searching and Simple Sorts 4

Searching
Given an array or list of data find the location
of a particular value or report that value is not
present
linear search

intuitive approach?
start at first item
is it the one I am looking for?
if not go to next item
repeat until found or all items checked

If items not sorted or unsortable this
approach is necessary

CS314 Searching and Simple Sorts 5

Linear Search
/* pre: data != null

post: return the index of the first occurrence
of target in data or -1 if target not present in
data

*/
public int linearSearch(int[] data, int target) {

for (int i = 0; i < data.length; i++) {
if (data[i] == target) {

return i;
}

}
return -1;

}

CS314 Searching and Simple Sorts 6

Linear Search, Generic
/* pre: data != null, no elements of data == null

target != null
post: return the index of the first occurrence
of target in data or -1 if target not present in
data

*/
public int linearSearch(Object[] data, Object target) {

for (int i = 0; i < data.length; i++)
if (target.equals(data[i]))

return i;
return -1;

}

T(N)? Big O? Best case, worst case, average case?

Clicker 1
What is the average case Big O of linear
search in an array with N items, if an item is
present once?

A. O(1)

B. O(logN)

C. O(N)

D. O(NlogN)

E. O(N2)

CS314 Searching and Simple Sorts 7 CS314 Searching and Simple Sorts 8

Searching in a Sorted Array or List
If items are sorted then we can divide and
conquer
dividing your work in half with each step

generally a good thing

The Binary Search with array in ascending order
Start at middle of list
is that the item?
If not is it less than or greater than the item?
less than, move to second half of list
greater than, move to first half of list
repeat until found or sub list size = 0

CS314 Searching and Simple Sorts 9

Binary Search

data

low item middle item high item

Is middle item what we are looking for? If not is it

more or less than the target item? (Assume lower)

data

low middle high
item item item

CS314 Searching and Simple Sorts 10

Binary Search in Action

2 3 5 7 11 13 17 19 23 29 31 37 41 4743 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

public static int bsearch(int[] data, int target) {
int indexOfTarget = -1;
int low = 0;
int high = data.length - 1;
while(indexOfTarget == -1 && low <= high) {

int mid = low + ((high - low) / 2);
if(data[mid] == target)

indexOfTarget = mid;
else if(data[mid] < target)

low = mid + 1;
else.

high = mid - 1;
}
return indexOfTarget;

}
// mid = (low + high) / 2; // may overflow!!!
// or mid = (low + high) >>> 1; using bitwise op

CS314 Searching and Simple Sorts 11

Trace When Key == 3
Trace When Key == 30

Variables of Interest?

Clicker 2

CS314 Searching and Simple Sorts 12

What is the worst case Big O of binary search in
an array with N items, if an item is present?

A.O(1)

B.O(logN)

C.O(N)

D.O(NlogN)

E.O(N2)

CS314 Searching and Simple Sorts 13

Generic Binary Search
public static <T extends Comparable<? super T>> int

bsearch(T[] data, T target) {

int result = -1;
int low = 0;
int high = data.length - 1;
while(result == -1 && low <= high) {

int mid = low + ((high - low) / 2);
int compareResult = target.compareTo(data[mid]);
if(compareResult == 0)

result = mid;
else if(compareResult > 0)

low = mid + 1;
else

high = mid - 1; // compareResult < 0
}
return result;

}

CS314 Searching and Simple Sorts 14

Recursive Binary Search
public static int bsearch(int[] data, int target) {

return bsearch(data, target, 0, data.length 1);
}

public static int bsearch(int[] data, int target,
int low, int high) {

if(low <= high){
int mid = low + ((high - low) / 2);
if(data[mid] == target)

return mid;
else if(data[mid] > target)

return bsearch(data, target, low, mid 1);
else

return bsearch(data, target, mid + 1, high);
}
return -1;

}
// Clicker 3 Is this a recursive backtracking algorithm?
A. NO
B. YES

CS314 Searching and Simple Sorts 15

Other Searching Algorithms
Interpolation Search

more like what people really do

Indexed Searching

Binary Search Trees

Hash Table Searching

best-first

A*

Sorting

CS314 Searching and Simple Sorts 17

Sorting
A fundamental application for computation
Done to make finding data (searching) faster
Many different algorithms for sorting
One of the difficulties with sorting is working
with a fixed size storage container (array)

if resize, that is expensive (slow)

The simple sorts are slow
bubble sort
selection sort
insertion sort

CS314 Searching and Simple Sorts 18

Selection sort
Algorithm

Search through the data and find the smallest element

swap the smallest element with the first element

repeat starting at second element and find the second
smallest element

public static void selectionSort(int[] data) {

for (int i = 0; i < data.length - 1; i++) {
int min = i;
for (int j = i + 1; j < data.length; j++)

if (data[j] < data[min])
min = j;

int temp = data[i];
data[i] = data[min];
data[min] = temp;

}
}

CS314 Searching and Simple Sorts 19

Insertion Sort in Practice

What is the T(N), actual number of
statements executed, of the selection sort
code, given an array of N elements?
What is the Big O?

44 68 191 119 119 37 83 82

CS314 Searching and Simple Sorts 20

Generic Selection Sort
public static <T extends Comparable<? super T>>

void selectionSort(T[] data) {

for(int i = 0; i < data.length - 1; i++) {
int min = i;
for(int j = i + 1; j < data.length; j++)

if(data[min].compareTo(data[j]) > 0)
min = j;

T temp = data[i];
data[i] = data[min];
data[min] = temp;

}
}

CS314 Searching and Simple Sorts 21

Insertion Sort
Another of the O(N2) sorts

The first item is sorted

Compare the second item to the first
if smaller swap

Third item, compare to item next to it
need to swap

after swap compare again

CS314 Searching and Simple Sorts 22

Insertion Sort Code
public void insertionSort(int[] data) {

for (int i = 1; i < data.length; i++) {
int temp = data[i];
int j = i;
while (j > 0 && temp < data[j - 1]) {

// swap elements
data[j] = data[j - 1];
data[j - 1] = temp;
j--;

}
}

}

Best case, worst case, average case Big O?

CS314 Searching and Simple Sorts 23

Clicker 4 - Comparing Algorithms
Which algorithm do you think has a smaller
T(N) given random data, selection sort or
insertion sort?

A. Insertion Sort

B. Selection Sort

C. About the same

Topic 15
Implementing and Using Stacks

"stack n.
The set of things a person has to do in the future. "I haven't
done it yet because every time I pop my stack something new
gets pushed." If you are interrupted several times in the
middle of a conversation, "My stack overflowed" means
"I forget what we were talking about."

-The Hacker's Dictionary
Friedrich L. Bauer
German computer scientist
who proposed "stack method
of expression evaluation"
in 1955.

CS314
Stacks

2

Sharper Tools

Lists

Stacks

CS314
Stacks

3

Stacks
Access is allowed only at one point of the structure,
normally termed the top of the stack

access to the most recently added item only

Operations are limited:
push (add item to stack)

pop (remove top item from stack)

top (get top item without removing it)

isEmpty

Described as a "Last In First Out"
(LIFO) data structure

CS314
Stacks

4

Implementing a stack
need an underlying collection to hold the elements
of the stack

3 obvious choices?
native array

linked structure of nodes

a list!!!

Adding a layer of abstraction.
A HUGE idea.
array implementation

linked list implementation

https://xkcd.com/2347/

CS314
Stacks

5

Uses of Stacks
The runtime stack used by a
process (running program) to
keep track of methods in
progress

Search problems

Undo, redo, back, forward

CS314
Stacks

6

Stack Operations
Assume a simple stack for integers.

Stack<Integer> s = new Stack<>();

s.push(12);

s.push(4);

s.push(s.top() + 2);

s.pop();

s.push(s.top());

//what are contents of stack?

CS314
Stacks

7

Clicker 1 - What is Output?
Stack<Integer> s = new Stack<>();
// put stuff in stack
for (int i = 0; i < 5; i++)

s.push(i);
// Print out contents of stack.
// Assume there is a size method.
for (int i = 0; i < s.size(); i++)

System.out.print(s.pop() + " ");

A 0 1 2 3 4 D 2 3 4

B 4 3 2 1 0 E No output due

C 4 3 2 to runtime error

CS314
Stacks

8

Corrected Version
Stack<Integer> s = new Stack<Integer>();
// put stuff in stack
for (int i = 0; i < 5; i++)

s.push(i);
// print out contents of stack
// while emptying it
final int LIMIT = s.size();
for (int i = 0; i < LIMIT; i++)

System.out.print(s.pop() + " ");

//or

// while (!s.isEmpty())

// System.out.println(s.pop());

CS314
Stacks

9

Stack Operations
Write a method to print out contents of stack
in reverse order.

Applications of Stacks

CS314
Stacks

11

Mathematical Calculations
What does 3 + 2 * 4 equal?
2 * 4 + 3? 3 * 2 + 4?
The precedence of operators affects the
order of operations.
A mathematical expression cannot simply be
evaluated left to right.
A challenge when evaluating a program.
Lexical analysis is the process of
interpreting a program.

What about 1 - 2 - 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3
CS314

Stacks
12

Infix and Postfix Expressions
The way we are use to writing
expressions is known as infix
notation
Postfix expression does not
require any precedence rules
3 2 * 1 + is postfix of 3 * 2 + 1
evaluate the following postfix
expressions and write out a
corresponding infix expression:
2 3 2 4 * + * 1 2 3 4 ^ * +
1 2 - 3 2 ^ 3 * 6 / + 2 5 ^ 1 -

Clicker Question 2
What does the following postfix expression
evaluate to?

6 3 2 + *

A. 11

B. 18

C. 24

D. 30

E. 36

CS314
Stacks

13 CS314
Stacks

14

Evaluation of Postfix Expressions
Easy to do with a stack

given a proper postfix expression:
get the next token

if it is an operand push it onto the stack

else if it is an operator
pop the stack for the right hand operand

pop the stack for the left hand operand

apply the operator to the two operands

push the result onto the stack

when the expression has been exhausted the
result is the top (and only element) of the stack

CS314
Stacks

15

Infix to Postfix
Convert the following equations from infix to
postfix:
2 ^ 3 ^ 3 + 5 * 1

11 + 2 - 1 * 3 / 3 + 2 ^ 2 / 3

Problems:

Negative numbers?

parentheses in expression

CS314
Stacks

16

Infix to Postfix Conversion
Requires operator precedence parsing algorithm

parse v. To determine the syntactic structure of a
sentence or other utterance

Operands: add to expression
Close parenthesis: pop stack symbols until an open

parenthesis appears
Operators:

Have an on stack and off stack precedence
Pop all stack symbols until a symbol of lower
precedence appears. Then push the operator

End of input: Pop all remaining stack symbols and
add to the expression

CS314
Stacks

17

Simple Example
Infix Expression: 3 + 2 * 4

PostFix Expression:

Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

18

Simple Example
Infix Expression: + 2 * 4

PostFix Expression: 3

Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

19

Simple Example
Infix Expression: 2 * 4

PostFix Expression: 3

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

20

Simple Example
Infix Expression: * 4

PostFix Expression: 3 2

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

21

Simple Example
Infix Expression: 4

PostFix Expression: 3 2

Operator Stack: + *

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

22

Simple Example
Infix Expression:

PostFix Expression: 3 2 4

Operator Stack: + *

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

23

Simple Example
Infix Expression:

PostFix Expression: 3 2 4 *

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

24

Simple Example
Infix Expression:

PostFix Expression: 3 2 4 * +

Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1
- 1 1
* 2 2
/ 2 2
^ 10 9
(20 0

CS314
Stacks

25

Example
11 + 2 ^ 4 ^ 3 - ((4 + 5) * 6) ^ 2

Show algorithm in action on above equation

CS314
Stacks

26

Balanced Symbol Checking
In processing programs and working with
computer languages there are many
instances when symbols must be balanced
{ } , [] , ()

A stack is useful for checking symbol balance.
When a closing symbol is found it must match
the most recent opening symbol of the same
type.

Applicable to checking html and xml tags!

CS314
Stacks

27

Algorithm for Balanced
Symbol Checking

Make an empty stack

read symbols until end of file
if the symbol is an opening symbol push it onto
the stack

if it is a closing symbol do the following
if the stack is empty report an error

otherwise pop the stack. If the symbol popped does
not match the closing symbol report an error

At the end of the file if the stack is not empty
report an error

CS314
Stacks

28

Algorithm in practice
list[i] = 3 * (44 - method(foo(list[2 * (i + 1) + foo(
list[i - 1])) / 2 *) - list[method(list[0])];

Complications
when is it not an error to have non matching symbols?

Processing a file
Tokenization: the process of scanning an input stream.
Each independent chunk is a token.

Tokens may be made up of 1 or more characters

Topic 16
Queues

"FISH queue: n.

[acronym, by analogy with FIFO (First In,

pointing out that processing of a particular
sequence of events or requests has stopped
dead. Also FISH mode and FISHnet; the
latter may be applied to any network that is
running really slowly or exhibiting extreme
flakiness."

-The Jargon File 4.4.7

CS314
Queues

2

Queues
A sharp tool, like stacks

A line

CS314
Queues

3

Queue Properties
Queues are a first in first out data
structure

FIFO (or LILO, but I guess that sounds a
bit silly)

Add items to the end of the queue

Access and remove from the front
Access to the element that has been in the
structure the longest amount of time

Used extensively in operating systems
Queues of processes, I/O requests, and
much more

CS314
Queues

4

Queues in Operating Systems
On a computer with N cores on the CPU, but more
than N processes, how many processes can actually
be executing at one time?

One job of OS, schedule the processes for the CPU

CS314
Queues

5

Queue operations
void enqueue(E item)

a.k.a. add(E item)

E front()
a.k.a. E peek()

E dequeue()
a.k.a. E remove()

boolean isEmpty()

Specify methods in an interface, allow multiple
implementations.

CS314
Queues

6

Queue interface, version 1
public interface Queue314<E> {

//place item at back of this queue
public void enqueue(E item);

//access item at front of this queue
//pre: !isEmpty()
public E front();

//remove item at front of this queue
//pre: !isEmpty()
public E dequeue();

public boolean isEmpty();
}

CS314
Queues

7

Implementing a Queue
Given the internal storage container and
choice for front and back of queue what are
the Big O of the queue operations?

ArrayList LinkedList LinkedList
(Singly Linked) (Doubly Linked)

enqueue

front

dequeue

isEmpty

Clicker 1
If implementing a queue with a singly linked list
with references to the first and last nodes (head
and tail) which end of the list should be the front
of the queue in order to have all queue
operations O(1)?

A. The front of the list should be the front of the queue.

B. The back of the list should be the front of the queue.

C. Either end will work to make all ops O(1).

D. Neither end will allow all ops to be O(1).

CS314
Queues

8

CS314
Queues

9

Alternate Implementation
How about implementing a Queue with a
native array?

Seems like a step backwards

CS314
Queues

10

Application of Queues
Radix Sort

radix is a synonym for base. base 10, base 2

Multi pass sorting algorithm that only looks
at individual digits during each pass
Use queues as buckets to store elements
Create an array of 10 queues
Starting with the least significant digit place
value in queue that matches digit
empty queues back into array
repeat, moving to next least significant digit

CS314
Queues

11

Radix Sort in Action: 1s place
original values in array
9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Look at ones place
9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Array of Queues (all empty initially):
0 5

1 6

2 7

3 8

4 9
CS314

Queues
12

Radix Sort in Action: 1s
original values in array
9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Look at ones place
9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Queues:
0 70, 40 5

1 6 86

2 12, 252, 12 7 37, 7

3 113, 93 8

4 9 9, 79

CS314
Queues

13

Radix Sort in Action: 10s
Empty queues in order from 0 to 9 back into
array
70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

Now look at 10's place
70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

Queues:
0 7, 9 5 252
1 12, 12, 113 6
2 7 70, 79
3 37 8 86
4 40 9 93

CS314
Queues

14

Radix Sort in Action: 100s
Empty queues in order from 0 to 9 back into array
7, 9, 12, 12, 113, 37, 40, 252, 70, 79, 86, 93

Now look at 100's place
__7, __9, _12, _12, 113, _37, _40, 252, _70, _79, _86, _93

Queues:
0 7, 9, _12, _12, _37, _40, _70, _79, _86, _93 5

1 113 6

2 252 7

3 8

4 9

CS314
Queues

15

Radix Sort in Action: Final Step
Empty queues in order from 0 to 9 back into
array
7, 9, 12, 12, 40, 70, 79, 86, 93, 113, 252

CS314
Queues

16

Radix Sort Code
public static void sort(int[] data){

ArrayList<Queue<Integer>> queues
= new ArrayList<Queue<Integer>>();

for(int i = 0; i < 10; i++)
queues.add(new LinkedList<Integer>());

int passes = numDigits(getMax(data));// helper methods

for(int i = 0; i < passes; i++){
for(int j = 0; j < data.length; j++) {

int digit = valueOfDigit(data[j], i);
queues.get(digit).add(data[j]);

}
int pos = 0;
for(Queue<Integer> q : queues){

while(!q.isEmpty())
data[pos++] = q.remove();

}
}

}

Topic 17
Faster Sorting

"The bubble sort seems to have
nothing to recommend it, except
a catchy name and the fact that it
leads to some interesting
theoretical problems."
- Don Knuth

Previous Sorts
Insertion Sort and Selection Sort are both
average case O(N2)

Today we will look at two faster sorting
algorithms.

quicksort

mergesort

CS314 Fast Sorting 2

Properties of Sorting Algorithms
In place?

Do we use another data structure or not?

Program stack typically not considered another
data structure if only using O(log N) space

Comparison?
Works by comparing the items to be sorted to
each other?

How could we not?

Stable?
Next slide!

CS314 Fast Sorting 3 CS314 Fast Sorting 4

Stable Sorting
A property of sorts
If a sort guarantees the relative order of
equal items stays the same then it is a stable
sort
[71, 6, 72, 5, 1, 2, 73, -5] original data

subscripts added for clarity

[-5, 1, 2, 5, 6, 71, 72, 73] sorted data
result of stable sort

Real world example:
sort a table in Wikipedia by one criteria, then another
sort by country, then by major wins

CS314 Fast Sorting 5

Quicksort
Invented by C.A.R. (Tony) Hoare

A divide and conquer approach
that uses recursion

1. If the list has 0 or 1 elements it is sorted

2. otherwise, pick any element p in the list. This is
called the pivot value

3. Partition the list minus the pivot into two sub lists
according to values less than or greater than the
pivot. (equal values go to either)

4. return the quicksort of the first list followed by the
quicksort of the second list

CS314 Fast Sorting 6

Quicksort in Action
39 23 17 90 33 72 46 79 11 52 64 5 71

Pick middle element as pivot: 46

Partition list

23 17 5 33 39 11 46 79 72 52 64 90 71

quick sort the less than list

Pick middle element as pivot: 33

23 17 5 11 33 39

quicksort the less than list, pivot now 5

{} 5 23 17 11

quicksort the less than list, base case

quicksort the greater than list

Pick middle element as pivot: 17

CS314 Fast Sorting 7

Quicksort on Another Data Set

44 68 191 119 119 37 83 95 191 45 158 130 76 153 39 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Big O of Quicksort?

CS314 Fast Sorting 8

private static void swapReferences(Object[] a, int index1, int index2) {
Object tmp = a[index1];
a[index1] = a[index2];
a[index2] = tmp;

}

private void quicksort(Comparable[] data, int start, int stop) {
if(start < stop) {

int pivotIndex = (start + stop) / 2;

// Place pivot at start position
swapReferences(data, pivotIndex, start);
Comparable pivot = data[start];

// Begin partitioning
int j = start;

// from first to j are elements less than or equal to pivot
// from j to i are elements greater than pivot
// elements beyond i have not been checked yet
for(int i = start + 1; i <= stop; i++) {

//is current element less than or equal to pivot
if (data[i].compareTo(pivot) <= 0) {

// if so move it to the less than or equal portion
j++;
swapReferences(data, i, j);

}
}

//restore pivot to correct spot
swapReferences(data, start, j);
quicksort(data, start, j - 1); // Sort small elements
quicksort(data, j + 1, stop); // Sort large elements

} // else start >= stop, 0 or 1 element, base case, do nothing
}

Clicker 1
What are the best case and worst case
Orders (Big O) for quicksort?

Best Worst

A. O(NlogN) O(N2)

B. O(N2) O(N2)

C. O(N2) O(N!)

D. O(NlogN) O(NlogN)

E. O(N) O(NlogN)

CS314 Fast Sorting 9

Clicker 2
Is quicksort always stable?

A. No

B. Yes

CS314 Fast Sorting 10

CS314 Fast Sorting 11

Merge Sort Algorithm

1. If a list has 1 element or 0
elements it is sorted

2. If a list has more than 1 split
into 2 separate lists

3. Perform this algorithm on each
of those smaller lists

4. Take the 2 sorted lists and
merge them together

Don Knuth cites John von Neumann as the creator
of this algorithm

CS314 Fast Sorting 12

Merge Sort

When implementing

one temporary array

is used instead of

multiple temporary

arrays.

Why?

CS314 Fast Sorting 13

Merge Sort code
/**
* perform a merge sort on the elements of data
* @param data data != null, all elements of data
* are the same data type
*/
public static void mergeSort(Comparable[] data) {

Comparable[] temp = new Comparable[data.length];
sort(data, temp, 0, data.length - 1);

}

private static void sort(Comparable[] data, Comparable[] temp,
int low, int high) {

if(low < high) {

int center = (low + high) / 2;

sort(data, temp, low, center);

sort(data, temp, center + 1, high);

merge(data, temp, low, center + 1, high);

}

}
CS314 Fast Sorting 14

Merge Sort Code
private static void merge(Comparable[] data, Comparable[] temp,

int leftPos, int rightPos, int rightEnd) {
int leftEnd = rightPos - 1;
int tempPos = leftPos;
int numElements = rightEnd - leftPos + 1;
//main loop
while(leftPos <= leftEnd && rightPos <= rightEnd){

if(data[leftPos].compareTo(data[rightPos]) <= 0) {
temp[tempPos] = data[leftPos];
leftPos++;

} else {
temp[tempPos] = data[rightPos];
rightPos++;

}
tempPos++;

}
//copy rest of left half
while (leftPos <= leftEnd) {

temp[tempPos] = data[leftPos];
tempPos++;
leftPos++;

}
//copy rest of right half
while (rightPos <= rightEnd) {

temp[tempPos] = data[rightPos];
tempPos++;
rightPos++;

}
//Copy temp back into data
for (int i = 0; i < numElements; i++, rightEnd--)

data[rightEnd] = temp[rightEnd];
}

Clicker 3
What are the best case and worst case
Orders (Big O) for mergesort?
Best Worst

A. O(NlogN) O(N2)

B. O(N2) O(N2)

C. O(N2) O(N!)

D. O(NlogN) O(NlogN)

E. O(N) O(NlogN)

CS314 Fast Sorting 15

Clicker 4
Is mergesort always stable?

A. No

B. Yes

CS314 Fast Sorting 16

Clicker 5
You have 1,000,000 distinct items in random
order that you will be searching. How many
searches need to be performed before the
data is changed to make it worthwhile to sort
the data before searching?

A. ~40

B. ~100

C. ~500

D. ~2,000

E. ~500,000
CS314 Fast Sorting 17 CS314 Fast Sorting 18

Comparison of Various Sorts (2001)
Num Items Selection Insertion Quicksort

1000 0.016 0.005 0 ??

2000 0.059 0.049 0.006

4000 0.271 0.175 0.005

8000 1.056 0.686 0??

16000 4.203 2.754 0.011

32000 16.852 11.039 0.045

64000 expected? expected? 0.068

128000 expected? expected? 0.158

256000 expected? expected? 0.335

512000 expected? expected? 0.722

1024000 expected? expected? 1.550

times in seconds

Comparison of Various Sorts (2011)
Num Items Selection Insertion Quicksort Merge Arrays.sort

1000 0.002 0.001 - - -

2000 0.002 0.001 - - -

4000 0.006 0.004 - - -

8000 0.022 0.018 - - -

16000 0.086 0.070 0.002 0.002 0.002

32000 0.341 0.280 0.004 0.005 0.003

64000 1.352 1.123 0.008 0.010 0.007

128000 5.394 4.499 0.017 0.022 0.015

256000 21.560 18.060 0.035 0.047 0.031

512000 86.083 72.303 0.072 0.099 0.066

1024000 ??? ??? 0.152 0.206 0.138

2048000 0.317 0.434 0.287

4096000 0.663 0.911 0.601

8192000 1.375 1.885 1.246

Comparison of Various Sorts (2020)
Num
Items

Selection Insertion Quicksort Mergesort Arrays.
sort(int)

Arrays.so
rt(Integer)

Arrays.
parallelSort

1,000 <0.001 <0.001 - - - - -

2,000 0.001 <0.001 - - - - -

4,000 0.004 0.003 - - - - Speeds

8,000 0.017 0.010 - - - - up????

16,000 0.065 0.040 0.002 0.002 0.003 0.011 0.007

32,000 0.258 0.160 0.002 0.003 0.002 0.008 0.003

64,000 1.110 0.696 0.005 0.008 0.004 0.011 0.001

128,000 4.172 2.645 0.011 0.015 0.009 0.024 0.002

256,000 16.48 10.76 0.024 0.034 0.018 0.051 0.004

512,000 70.38 47.18 0.049 0.068 0.040 0.114 0.008

1,024,000 - - 0.098 0.143 0.082 0.259 0.017

2,048,000 - - 0.205 0.296 0.184 0.637 0.035

4,096,000 - - 0.450 0.659 0.383 1.452 0.079

8,192,000 - - 0.941 1.372 0.786 3.354 0.148

Fast Sorting 21

Concluding Thoughts
Language libraries often have sorting
algorithms in them

Java Arrays and Collections classes

C++ Standard Template Library

Python sort and sorted functions

Hybrid sorts
when size of unsorted list or portion of array is
small use insertion sort, otherwise use
O(N log N) sort like Quicksort or Mergesort

Concluding Thoughts
Sorts still being created!

Timsort (2002)
created for python version 2.3

now used in Java version 7.0+

takes advantage of real world data

real world data is usually partially sorted,
not totally random

Library Sort (2006)
Like insertion sort,
but leaves gaps for later elements

Fast Sorting 22

CS314 Fast Sorting 23

Topic 18
Binary Trees

"A tree may grow a
thousand feet tall, but
its leaves will return to
its roots."

-Chinese Proverb

2

Definitions
A tree is an abstract data type

one entry point, the root

Each node is either a leaf or an
internal node

An internal node has 1 or more
children, nodes that can be
reached directly from that
internal node.

The internal node is said to be
the parent of its child nodes

root node

leaf nodes

internal
nodes

Binary TreesCS314

3

Properties of Trees
Only access point is the root

All nodes, except the root, have one parent
like the inheritance hierarchy in Java

Traditionally trees drawn upside down

root

leavesBinary TreesCS314 4

Properties of Trees and Nodes
siblings: two nodes that
have the same parent

edge: the link from one
node to another

path length: the number of
edges that must be
traversed to get from one
node to another

root

siblings

edge

path length from root to this
node is 3

Binary TreesCS314

0

1 2

3

4 5

5

More Properties of Trees
depth: the path length from the root of the
tree to this node
height of a node: The maximum distance
(path length) of any leaf from this node

a leaf has a height of 0
the height of a tree is the height of the root of that
tree

descendants: any nodes that can be reached
via 1 or more edges from this node
ancestors: any nodes for which this node is a
descendant

Binary TreesCS314 6

Tree Visualization

DB C

FE

A

G H JI

K L M

N O
Binary TreesCS314

Clicker 1
What is the depth of the node that contains
M on the previous slide?

A. 0

B. 1

C. 2

D. 3

E. 4
Clicker 2 - Same tree, same choices
What is the height of the node
that contains D?

7Binary TreesCS314 8

Binary Trees
There are many variations on trees but we
will start with binary trees

binary tree: each node has at most two
children

the possible children are usually referred to as
the left child and the right child

parent

left child right child

Binary TreesCS314

9

Full Binary Tree
full binary tree: a binary tree in which each
node has 2 or 0 children

Binary TreesCS314

Clicker 3
What is the maximum height of a full binary
tree with 11 nodes?

A. 3

B. 5

C. 7

D. 10

E. Not possible to have full binary tree with 11
nodes.

CS314 Binary Trees 10

11

Complete Binary Tree
complete binary tree: a binary tree in which
every level, except possibly the deepest is
completely filled. At depth n, the height of the
tree, all nodes are as far left as possible

Where would the next node go
to maintain a complete tree?

Binary TreesCS314

Clicker 4
What is the height of a complete binary tree
that contains N nodes?

A. O(1)

B. O(logN)

C. O(N1/2)

D. O(N)

E. O(NlogN)

Recall, order can be applied to any function.
It doesn't just apply to running time.

CS314 Binary Trees 12

13

Perfect Binary Tree
perfect binary tree: a binary tree with all leaf
nodes at the same depth. All internal nodes
have exactly two children.

a perfect binary tree has the maximum
number of nodes for a given height

a perfect binary tree has (2(n+1) - 1) nodes
where n is the height of the tree

height = 0 -> 1 node

height = 1 -> 3 nodes

height = 2 -> 7 nodes

height = 3 -> 15 nodes

Binary TreesCS314 14

A Binary Node class
public class Bnode<E> {

private E myData;
private Bnode<E> myLeft;
private Bnode<E> myRight;

public BNode();
public BNode(Bnode<E> left, E data,

Bnode<E> right)
public E getData()
public Bnode<E> getLeft()
public Bnode<E> getRight()

public void setData(E data)
public void setLeft(Bnode<E> left)
public void setRight(Bnode<E> right)

}
Binary TreesCS314

15

Binary Tree Traversals
Many algorithms require all nodes of a binary tree
be visited and the contents of each node processed
or examined.

There are 4 traditional types of traversals
preorder traversal: process the root, then process all sub
trees (left to right)

in order traversal: process the left sub tree, process the
root, process the right sub tree

post order traversal: process the left sub tree, process
the right sub tree, then process the root

level order traversal: starting from the root of a tree,
process all nodes at the same depth from left to right,
then proceed to the nodes at the next depth.

Binary TreesCS314 16

Results of Traversals
To determine the results of a traversal on a
given tree draw a path around the tree.

start on the left side of the root and trace around
the tree. The path should stay close to the tree.

12

49 42

513

pre order: process when
pass down left side of node
12 49 13 5 42

in order: process when pass
underneath node
13 49 5 12 42

post order: process when
pass up right side of node
13 5 49 42 12 Binary TreesCS314

17

Clicker 5 - Tree Traversals

DC

Z

A

G H J

Q L

Binary Trees

What is a the result of a
post order traversal of
the tree to the left?

A. Z C G A Q H L D J

B. Z G C Q L H J D A

C. A C Z G D H Q L J

D. A C D Z G H J Q L

E. None of these

18

Implement Traversals
Implement preorder, inorder, and post order
traversal

Big O time and space?

Implement a level order traversal using a
queue

Big O time and space?

Implement a level order traversal without a
queue

target depth

Binary TreesCS314

Breadth First Search
Depth First Search

from NIST - DADS

breadth first search: Any search algorithm that
considers neighbors of a vertex (node), that is,
outgoing edges (links) of the vertex's predecessor
in the search, before any outgoing edges of the
vertex

depth first search: Any search algorithm that
considers outgoing edges (links of children) of a
vertex (node) before any of the vertex's (node)
siblings, that is, outgoing edges of the vertex's
predecessor in the search. Extremes are searched
first.

Clicker 6
Which traversal of a tree is a breadth first
search?

A. Level order traversal

B. Pre order traversal

C. In order traversal

D. Post order traversal

E. More than one of these

CS314 Binary Trees 20

Breadth First
A level order traversal of a tree could be
used as a breadth first search

Search all nodes in a level before going
down to the next level

CS314 Binary Trees 21

Breadth First Search of Tree

CS314 Binary Trees 22

C

A G X Z

W

B

Q P O U

K ZL

M R

Breadth First Search

CS314 Binary Trees 23

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 0 first
Find Node with B

Breadth First Search

CS314 Binary Trees 24

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 25

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 26

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 27

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 28

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1 nextFind Node with B

Breadth First Search

CS314 Binary Trees 29

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 30

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 31

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 32

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 33

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 34

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 3 nextFind Node with B

Breadth First Search

CS314 Binary Trees 35

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 3 nextFind Node with B

Breadth First Search

CS314 Binary Trees 36

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 3 nextFind Node with B

BFS - DFS
Breadth first search typically implemented
with a Queue

Depth first search typically implemented with
a stack, implicit with recursion or iteratively
with an explicit stack

which technique do I use?
depends on the problem

CS314 Binary Trees 37

Depth First Search of Tree

CS314 Binary Trees 38

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 39

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 40

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 41

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 42

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 43

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 44

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 45

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 46

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 47

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 48

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 49

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 50

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 51

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 52

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Topic 19
Binary Search Trees

"Yes. Shrubberies are my trade. I am a
shrubber. My name is 'Roger the Shrubber'. I
arrange, design, and sell shrubberies."

-Monty Python and The Holy Grail

CS314 2

The Problem with Linked Lists
Accessing a item from a linked list takes
O(N) time for an arbitrary element

Binary trees can improve upon this and
reduce access to O(log N) time for the
average case

Expands on the binary search technique and
allows insertions and deletions

Worst case degenerates to O(N) but this can
be avoided by using balanced trees (AVL,
Red-Black)

Binary Search Trees

CS314 3

Binary Search Trees
A binary search tree is a binary tree in which every
node's left subtree holds values less than the
node's value, and every right subtree holds values
greater than the node's value.

A new node is added as a leaf.

parent

left child right child

root

17

11 19

< 17 > 17

Binary Search Trees

BST Insertion
Add the following values one at a time to an
initially empty binary search tree using the
simple algorithm:

50 90 20 78 10 20 28 -25

What is the resulting tree?

CS314 Binary Search Trees 4

Traversals
What is the result of an inorder traversal of
the resulting tree?

How could a preorder traversal be useful?

CS314 Binary Search Trees 5

Clicker 1
After adding N distinct elements in random
order to a Binary Search Tree what is the
expected height of the tree? (using the
simple insertion algorithm)

A. O(logN)

B. O(N1/2)

C. O(N)

D. O(NlogN)

E. O(N2)

CS314 6Binary Search Trees

Clicker 2
After adding N distinct elements to a Binary
Search Tree what is the worst case height
of the tree? (using the simple insertion
algorithm)

A. O(logN)

B. O(N1/2)

C. O(N)

D. O(NlogN)

E. O(N2) `

CS314 7Binary Search Trees CS314 8

Worst Case Performance
Insert the following values into an initially
empty binary search tree using the simple,
naïve algorithm:

2 3 5 7 11 13 17

What is the height of the tree?

What is the worst case height of a BST?

Binary Search Trees

CS314 9

Node for Binary Search Trees
public class BSTNode<E extends Comparable<E> {

private Comparable<E> myData;
private BSTNode<E> myLeft;
private BSTNode<E> myRightC;

public BinaryNode(E item)
{ myData = item; }

public E getValue()
{ return myData; }

public BinaryNode<E> getLeft()
{ return myLeft; }

public BinaryNode<E> getRight()
{ return myRight; }

public void setLeft(BSTNode<E> b)
{ myLeft = b; }
// setRight not shown

} Binary Search Trees CS314 10

More on Implementation
Many ways to implement BSTs

Using nodes is just one and even then many
options and choices

public class BinarySearchTree<E extends Comparable<E>> {

private BSTNode<E> root;
private int size;

Binary Search Trees

CS314 11

Add an Element, Recursive

Binary Search Trees CS314 12

Add an Element, Iterative

Binary Search Trees

Clicker 3
What are the best case and worst case order
to add N distinct elements, one at a time, to
an initially empty binary search tree using the
simple add algorithm?

Best Worst

A. O(N) O(N)

B. O(NlogN) O(NlogN)

C. O(N) O(NlogN)

D. O(NlogN) O(N2)

E. O(N) O(N2)
13

// given int[] data

// no duplicates in

// data
BST<Integer> b =
new BST<Integer>();

for(int x : data)

b.add(x);

CS314 14

Performance of Binary Trees
For the three core operations (add, access,
remove) a binary search tree (BST) has an
average case performance of O(log N)

Even when using the naïve insertion /
removal algorithms

no checks to maintain balance

balance achieved based on the randomness of
the data inserted

Binary Search Trees

CS314 15

Remove an Element
Five (four?) cases

not present

node is a leaf, 0 children (easy)

node has 1 child, left or right (easy)

node has 2 children ("interesting")

Binary Search Trees CS314 16

Properties of a BST
The minimum value is in the left

most node
The maximum value is in the right

most node
useful when removing an element
from the BST

Binary Search Trees

CS314 17

Alternate Implementation
In class examples of dynamic data structures
have relied on null terminated ends.

Use null to show end of list or no children

Alternative form
use structural recursion and polymorphism

Binary Search Trees CS314 18

BST Interface

public interface BST<E extends
Comparable<? super E>> {

public int size();

public boolean contains(E obj);

public BST<E> add(E obj);

}

Binary Search Trees

CS314 19

EmptyBST
public class EmptyBST<E extends Comparable<? super E>>

implements BST<E> {

private static final EmptyBST theOne = new EmptyBST();

private EmptyBST() {}

public static EmptyBST getEmptyBST(){ return theOne; }

public BST<E> add(E obj) { return new NEBST(obj); }

public boolean contains(E obj) { return false; }

public int size() { return 0; }
} Binary Search Trees CS314 20

Non Empty BST Part 1
public class NEBST <E extends Comparable<? super E>> implements BST<E> {

private E data;
private BST left;
private BST right;

public NEBST(E d) {
data = d;
right = EmptyBST.getEmptyBST();
left = EmptyBST.getEmptyBST();

}

public BST add(E obj) {
int direction = obj.compareTo(data);
if (direction < 0)

left = left.add(obj);
else if (direction > 0)

right = right.add (obj);
return this;

}
Binary Search Trees

CS314 21

Non Empty BST Part 2

public boolean contains(E obj){
int dir = obj.compareTo(data);
if(dir == 0)

return true;
else if (dir < 0)

return left.contains(obj);
else

return right.contains(obj);
}

public int size() {
return 1 + left.size() + right.size();

}

} Binary Search Trees

Topic 20: Huffman Coding

The author should gaze at Noah, and ...
learn, as they did in the Ark, to crowd a
great deal of matter into a very small
compass.

Sydney Smith, Edinburgh Review

Agenda

Encoding

Compression

Huffman Coding

2

Encoding

UTCS
85 84 67 83
01010101 01010100 01000011 01010011

What is stored in a jpg file? A text file? A Java file?
A png file? A pdf file? An mp3 file? An mp4 file? An
excel spreadsheet file? A zip file?
open a bitmap in a text editor

3

ASCII - UNICODE

4

Text File

5

Text File???

6

Bitmap and JPEG File

7

Bitmap File????

8

JPEG File

9

JPEG VS BITMAP

JPEG File

10

Encoding Schemes

"It's all 1s and 0s"

What do the 1s and 0s mean?

50 121 109

ASCII -> 2ym

Red Green Blue->
dark teal?

11

Image file formats: bmp, png, jpg, gif, tiff,
svg, cgm, pgm

XKCD, Standards: https://xkcd.com/927/

Why So Many Encoding /
Decoding Schemes?

12

Agenda

Encoding

Compression

Huffman Coding

13

Compression

Compression: Storing the same information
but in a form that takes less memory

lossless and lossy compression

Recall:

14

Lossy Artifacts

15

Compression

00000000000000000000000000000000
111111111111111111111111111111

0 00100000 1 00011110

16

Why Bother?

Is compression really necessary?

5 Terabytes.
~5,000,000,000,0000 bytes 17

Clicker 1

With computer storage so cheap, is
compression really necessary?

A. No

B. Yes

C. It Depends

18

Little Pipes and Big Pumps

Home Internet Access
400 Mbps roughly $115
per month

12 months * 3 years *
$115 =

400,000,000 bits /second
= 5 * 107 bytes / sec

CPU Capability
$2,000 for a good laptop
or desktop

-7900X

Assume it lasts 3 years.

Memory bandwidth
40 GB / sec
= 4.0 * 1010 bytes / sec

on the order of
6.4 * 1011 instructions /
second

19

Mobile Devices?

Cellular Network

Mega bits per second

AT&T
17 mbps download, 7 mbps
upload

T-Mobile & Verizon
12 mbps download, 7 mbps
upload

17,000,000 bits per
second = 2.125 x 106

bytes per second
http://tinyurl.com/q6o7wan

iPhone CPU

Apple A6 System on a
Chip

Coy about IPS

2 cores

Rough estimates:
1 x 1010 instructions per
second

20

Little Pipes and Big Pumps

Data In
From Network

CPU

21

Agenda

Encoding

Compression

Huffman Coding

22

23

Huffman Coding

Proposed by Dr. David A. Huffman
Graduate class in 1951 at MIT with Robert Fano

term paper or final

term paper: prove min bits needed for binary
coding of data

A Method for the Construction of Minimum
Redundancy Codes

Applicable to many forms of data transmission
Our example: text files

still used in fax machines, mp3 encoding, others 24

The Basic Algorithm

Huffman coding is a form of statistical coding

Not all characters occur with the same
frequency, in typical text files. (can be true
when reading raw bytes as well)

Yet in ASCII all characters are allocated the
same amount of space

1 char = 1 byte, be it e or x

fixed width encoding

25

The Basic Algorithm

Any savings in tailoring codes to
frequency of character?

Code word lengths are no longer fixed like
ASCII or Unicode

Code word lengths vary and will be
shorter for the more frequently used
characters

Examples use characters for clarity, but in
reality just read raw bytes from file.

26

The Basic Algorithm

1. Scan file to be compressed and determine
frequency of all values.

2. Sort or prioritize values based on
frequency in file.

3. Build Huffman code tree based on
prioritized values.

4. Perform a traversal of tree to determine
new codes for values.

5. Scan file again to create new file
using the new Huffman codes

27

Building a Tree
Scan the original text

Consider the following short text

Eerie eyes seen near lake.

Determine frequency of all numbers (values
or in this case characters) in the text

28

Building a Tree
Scan the original text

Eerie eyes seen near lake.
What characters are present?

E e r i space

y s n a r l k .

29

Building a Tree
Scan the original text

Eerie eyes seen near lake.
What is the frequency of each character in the
text?

Char Freq. Char Freq. Char Freq.
E 1 y 1 k 1
e 8 s 2 . 1
r 2 n 2
i 1 a 2
space 4 l 1

30

Building a Tree
Prioritize values from file

Create binary tree nodes with a value
and the frequency for each value

Place nodes in a priority queue
The lower the frequency, the higher the
priority in the queue

31

The queue after enqueueing all nodes

Null Pointers are not shown

sp = space

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

front back

32

Building a Tree

While priority queue contains two or more
nodes

Create new node

Dequeue node and make it left child

Dequeue next node and make it right child

Frequency of new node equals sum of frequency of
left and right children

New node does not contain value

Enqueue new node back into the priority queue

33

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

34

Building a Tree

E
1

i
1

2

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

35

Building a Tree

E
1

i
1

k

1

l

1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8
2

36

Building a Tree

E
1

i
1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8
2

k
1

l
1

2

37

Building a Tree

E
1

i
1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

38

Building a Tree

E
1

i
1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

39

Building a Tree

E
1

i
1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

40

Building a Tree

E
1

i
1

r

2

s

2
sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

41

Building a Tree

E
1

i
1

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

42

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

43

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

44

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4

45

Building a Tree

E
1

i
1

sp

4

e

82

k
1

l
1

2
y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4

46

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4

6

47

Building a Tree

E
1

i
1

sp
4

e

8
2

k
1

l
1

2

y
1

.
1

2
a
2

n
2

4

r
2

s
2

4 4 6

48

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4 6

8

49

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

r
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4 6 8

50

Building a Tree

E
1

i
1

sp
4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10

51

Building a Tree

E
1

i
1

sp
4

e

8

2

k
1

l
1

2

y
1

.
1

2a
2

n
2

4

r
2

s
2

4 4
6

8 10

Clicker 2 - What is happening to the values with a
low frequency compared to values with a high freq.?

A. Smaller Depth B. Larger Depth
C. Something else

52

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10

16

53

Building a Tree

E
1

i
1

sp
4

e
82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10 16

54

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

55

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

After
enqueueing
this node
there is only
one node left
in priority
queue.

56

Building a Tree
Dequeue the single node
left in the queue.

This tree contains the
new code words for each
character.

Frequency of root node
should equal number of
characters in text.

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

Eerie eyes seen near lake. 4 spaces,
26 characters total

57

Encoding the File
Traverse Tree for Codes

Perform a traversal of the tree
to obtain new code words
(sequence of 0's and 1's)

left, append a 0 to code word

right append a 1 to code word

code word is only complete
when a leaf node is reached

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

58

Encoding the File
Traverse Tree for Codes

Original Value New Code
E (0100 0101) 0000
i (0110 1001) 0001
k (0110 1011) 0010
l (0110 1100) 0011
y (0111 1001) 0100
. (0010 1110) 0101
space (0010 0000) 011
e (0110 0101) 10
a (0110 0001) 1100
n (0110 1110) 1101
r (0111 0010) 1110
s (0111 0011) 1111

Prefix free codes. The code for a value in never the prefix
of another code.

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

59

Encoding the File

Rescan original file and
encode file using new code
words

Eerie eyes seen near lake.

Char New Code
E 0000
i 0001
k 0010
l 0011
y 0100
. 0101
space 011
e 10
a 1100
n 1101
r 1110
s 1111

000010111000011001110
010010111101111111010
110101111011011001110
011001111000010100101

60

Encoding the File
Results

Have we made things any
better?

84 bits to encode the file

ASCII would take 8 * 26 =
208 bits

000010111000011001110
010010111101111111010
110101111011011001110
011001111000010100101

If modified code used 4 bits per
character are needed. Total bits
4 * 26 = 104. Savings not as great.

61

Decoding the File

How does receiver know what the codes are?

Tree constructed for each file.
Considers frequency for each file

Big hit on compression, especially for smaller files

Tree predetermined
based on statistical analysis of text files
or other file types

62

Clicker 3 - Decoding the File

Once receiver has tree it
scans incoming bit stream
0 go left
1 go right

1010001001111000111111
11011100001010

A. elk nay sir
B. eek a snake
C. eek kin sly
D. eek snarl nil
E. eel a snarl

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

Alex Fall 2022

63

Assignment Hints

reading chunks not chars

header format

the pseudo eof value

the GUI

64

Assignment Example

"Eerie eyes seen near lake." will result in different
codes than those shown in slides due to:

adding elements in order to PriorityQueue

required pseudo eof value (PEOF)

65

Assignment Example

66

Char Freq. Char Freq. Char Freq.
E 1 y 1 k 1
e 8 s 2 . 1
r 2 n 2 PEOF 1
i 1 a 2
space 4 l 1

Assignment Example

67

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

Assignment Example

68

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2

Assignment Example

69

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8
2

Assignment Example

70

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8
2 2

Assignment Example

71

.

1

y

1
E

1

i

1

k

1
l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8
2 2 2

Assignment Example

72

.

1

y

1
E

1

i

1

k

1
l

1
PEOF

1
a

2

n

2

r

2

s

2

SP

4

e

8
2 2 2 3

Assignment Example

73

.

1

y

1
E

1

i

1

k

1
l

1
PEOF

1
a

2
n

2

r

2

s

2

SP

4
e

8

2 2 2 3 4

Assignment Example

74

.

1

y

1

E

1

i

1

k

1
l

1
PEOF

1
a

2
n

2

r

2

s

2

SP

4
e

8
2

2 2 3 4 4

75

.

1

y

1
E

1

i

1

k

1
l

1 PEOF

1
a

2

n

2

r

2

s

2
SP

4

e

8
2

2 2
3

4 4 4 7

76

y

1

i

1

k

1
l

1
PEOF

1
a

2

SP

4

e

8

2 2 3

4
7

.

1

E

1

n

2

r

2
s

2
2

4 4

8

77

y

1

i

1

k

1
l

1 PEOF

1
a

2

SP

4

e

8

2 2
3

4 7

.

1

E

1

n

2

r

2
s

2
2

4 4

8 11

y

1

i

1

k

1
l

1 PEOF

1
a

2

SP

4

e

8

2 2
3

4 7

.

1

E

1

n

2

r

2

s

2
2

4 4

8

11 16

78

y

1

i

1

k

1
l

1 PEOF

1
a

2

SP

4

e

8

2 2
3

4 7

.

1

E

1

n

2

r

2

s

2
2

4 4

8

11 16

27

79

Codes

80

value: 32, equivalent char: , frequency: 4, new code 011

value: 46, equivalent char: ., frequency: 1, new code 11110

value: 69, equivalent char: E, frequency: 1, new code 11111

value: 97, equivalent char: a, frequency: 2, new code 0101

value: 101, equivalent char: e, frequency: 8, new code 10

value: 105, equivalent char: i, frequency: 1, new code 0000

value: 107, equivalent char: k, frequency: 1, new code 0001

value: 108, equivalent char: l, frequency: 1, new code 0010

value: 110, equivalent char: n, frequency: 2, new code 1100

value: 114, equivalent char: r, frequency: 2, new code 1101

value: 115, equivalent char: s, frequency: 2, new code 1110

value: 121, equivalent char: y, frequency: 1, new code 0011

value: 256, equivalent char: ?, frequency: 1, new code 0100

Altering files

Tower bit map (Eclipse/Huffman/Data).
Alter the first 300 characters of line
16765 to this

81

~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00 xxx

Compression - Why Bother?

82

Apostolos "Toli" Lerios

Facebook Engineer

Heads image storage group

jpeg images already
compressed

look for ways to compress even
more

1% less space = millions of
dollars in savings

Graphs
Topic 21

" Hopefully, you've played around a bit with The Oracle of Bacon at
Virginia and discovered how few steps are necessary to link just about
anybody who has ever been in a movie to Kevin Bacon, but could there be
some actor or actress who is even closer to the center of the Hollywood
universe?.

By processing all of the almost half of a million people in the Internet
Movie Database I discovered that there are currently 1160 people who are
better
numbers we see that the average (Sean) Connery Number is about 2.682
making Connery a better center than Bacon"

-Who is the Center of the Hollywood Universe?,
University of Virginia

That was in 2001.
In 2013 Harvey Keitel has become the center of the Hollywood
Universe. Connery is 136th.
Bacon has moved up to 370th. CS314 2

An Early Problem in
Graph Theory

Leonhard Euler (1707 - 1783)
One of the first mathematicians to study graphs

The Seven Bridges of Konigsberg Problem
Konigsberg is now called Kaliningrad

A puzzle for the residents of the city
The river Pregel flows through the city
7 bridges crossed the river
Can you cross all bridges while crossing
each bridge only once? An Eulerian Circuit

Graphs

CS314 3

Konigsberg and the River Pregel

Graphs

A

B

C

D

Clicker 1
How many solutions does the Seven Bridges
of Konigsberg Problem have?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Graphs 4

CS314 5

How to Solve
Brute Force?

Euler's Solution
Redraw the map as a graph
(really a multigraph as opposed
to a simple graph, 1 or 0 edges
per pair of vertices)

a

b

c

d

Graphs CS314 6

Euler's Proposal
A connected graph has an Euler tour (cross
every edge exactly one time and end up at
starting node) if and only if every vertex has
an even number of edges

Eulerian Circuit

Clicker 2 - What if we reduce the problem to
only crossing each edge (bridge) exactly
once?

Doesn't matter if we end up where we started

Eulerian Trail

A. 0 B. 1 C. 2 D. 3 E. >= 4
Graphs

CS314 7

Graph Definitions
A graph is comprised of a set of vertices
(nodes) and a set of edges (links, arcs)
connecting the vertices

An edge connects 2 vertices

in a directed graph edges are one-way
movement allowed from first node to second, but
not second to first

directed graphs also called digraphs

in an undirected graph edges are two-way
movement allowed in either direction

Graphs

Definitions
In a weighted graph the edge has cost or weight
that measures the cost of traveling along the edge

A path is a sequence of vertices connected by
edges

The path length is the number of edges

The weighted path length is the sum of the cost of the
edges in a path

A cycle is a path of length 1 or more that starts and
ends at the same vertex without repeating any
other vertices

a directed acyclic graph is a directed graph with
no cycles

CS314 Graphs 8

CS314 9

Graphs We've Seen

link link link link

link link link

19

12 35

3 16 5621

Graphs

Example Graph
Scientists (and academics of ALL kinds) use
graphs to model all kinds of things.

CS314 Graphs 10

Arpanet 1969, 1971

Example Graph

CS314 Graphs 11

Roman
Transportation

Network

Roman
Transportation Network

CS314 Graphs 12

Example Graph

CS314 Graphs 13

Enron emails 2001

Example Graph

CS314 Graphs 14

US Airport Network

Example Graph

CS314 Graphs 15

Example Graph

"Jefferson" High School, Ohio Chains of Affection: The Structure of Adolescent Romantic
and Sexual Networks, 2005,

CS314 17

How to store a graph as a data structure?

Representing Graphs

Graphs CS314 18

Adjacency Matrix
Representation

A Br Bl Ch Co E FG G Pa Pe S U V
A 0 1 1 1 0 0 0 0 1 0 0 1 0
Br 1 0 1 0 1 0 1 1 1 1 1 1 1
Bl 1 1 0 1 0 0 0 0 1 1 0 0 0
Ch 1 0 1 0 0 0 0 0 0 1 0 0 0
Co 0 1 0 0 0 1 0 0 0 1 0 0 1
E 0 0 0 0 1 0 0 0 0 1 0 0 0
FG 0 1 0 0 0 0 0 0 0 0 1 0 0
G 0 1 0 0 0 0 0 0 0 0 1 0 1
Pa 1 1 1 0 0 0 0 0 0 0 0 0 0
Pe 0 1 1 1 1 1 0 0 0 0 0 0 0
S 0 1 0 0 0 0 1 1 0 0 0 0 0
U 1 1 0 0 0 0 0 0 0 0 0 0 0
V 0 1 0 0 1 0 0 1 0 0 0 0 0

Country Code

Argentina A

Brazil Br

Bolivia Bl

Chile Ch

Colombia Co

Ecuador E

French
Guiana

FG

Guyana G

Paraguay Pa

Peru Pe

Suriname S

Uruguay U

Venezuela V

Graphs

Undirected Graph?
Use a ragged 2d array to save space

CS314 Graphs 19 CS314 20

The Map Coloring Problem
How many colors do you need to color a
map, so that no 2 countries that have a
common border (not a point) are colored the
same?

How to solve using Brute Force?

Graphs

Example

Source: https://en.wikipedia.org/wiki/Four_color_theorem 21 CS314 22

A Solution

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue

Yellow

Yellow

Blue

Red

Graphs

CS314 23

What About the Ocean?
A Br Bl Ch Co E FG G Pa Pe S U V Oc

A 0 1 1 1 0 0 0 0 1 0 0 1 0 1
Br 1 0 1 0 1 0 1 1 1 1 1 1 1 1
Bl 1 1 0 1 0 0 0 0 1 1 0 0 0 0
Ch 1 0 1 0 0 0 0 0 0 1 0 0 0 1
Co 0 1 0 0 0 1 0 0 0 1 0 0 1 1
E 0 0 0 0 1 0 0 0 0 1 0 0 0 1
FG 0 1 0 0 0 0 0 0 0 0 1 0 0 1
G 0 1 0 0 0 0 0 0 0 0 1 0 1 1
Pa 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Pe 0 1 1 1 1 1 0 0 0 0 0 0 0 1
S 0 1 0 0 0 0 1 1 0 0 0 0 0 1
U 1 1 0 0 0 0 0 0 0 0 0 0 0 1
V 0 1 0 0 1 0 0 1 0 0 0 0 0 1
Oc 1 1 0 1 1 1 1 1 0 1 1 1 1 0

Graphs CS314 24

Make the Ocean Blue

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue
Yellow

Yellow

Red

Graphs

Red

Red

Red

More Definitions
A dense graph is one with a "large" number
of edges

maximum number of edges?

A "sparse" graph is one in which the number
of edges is "much less" than the maximum
possible number of edges

No standard cutoff for dense and sparse graphs

CS314 Graphs 25

Graph Representation
For dense graphs the adjacency matrix is a
reasonable choice

For weighted graphs change booleans to double
or int

Can the adjacency matrix handle
directed graphs?

Most graphs are sparse, not dense

For sparse graphs an adjacency list is an
alternative that uses less space

Each vertex keeps a list of edges to the
vertices it is connected to.

CS314 Graphs 26

Graph Implementation
public class Graph

private static final double INFINITY
= Double.MAX_VALUE;

private Map<String, Vertex> vertices;

public Graph() // create empty Graph

public void addEdge(String source,
String dest, double cost)

// find all paths from given vertex
public void findUnweightedShortestPaths

(String startName)

// called after findUnweightedShortestPath
public void printPath(String destName)

Graph Class
This Graph class stores vertices

Each vertex has an adjacency list
what vertices does it connect to?

shortest path method finds all paths from
start vertex to every other vertex in graph

after shortest path method called queries
can be made for path length from start node
to destination node

CS314 Graphs 28

Vertex Class (nested in Graph)

CS314 Graphs 29

private static class Vertex
private String name;
private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms
private double distance;
private Vertex prev;
private int scratch;

// call before finding new paths
public void reset()

Edge Class (nested in Graph)

CS314 Graphs 30

private static class Edge
private Vertex dest;
private double cost;

private Edge(Vertex d, double c)

Unweighted Shortest Path
Given a vertex, S (for start) find the shortest
path from S to all other vertices in the graph

Graph is unweighted (set all edge costs to 1)

CS314 Graphs 31

S

V5
V3

V1 V6

V4

V2

V7

V8

6 Degrees of Wikipedia
https://www.sixdegreesofwikipedia.com/

CS314 Graphs 32

Word Ladders
Agree upon dictionary

Start word and end word of
same length

Change one letter at a time to
form step

Step must also be a word

Example: Start = silly, end =
funny

CS314 Graphs 33

silly
sully
sulky
hulky
hunky
funky
funny

Clicker 3 - Graph Representation
What are the vertices and when does
an edge exist between two vertices?

Vertices Edges
A. Letters Words

B. Words Words that share one or more letters

C. Letters Words that share one or more letters

D. Words Words that differ by one letter

E. Words Letters

CS314 Graphs 34

CS314 Graphs 35

smart

swart

start

smarm

smalt

scart

Portion of Graph

Clicker 4 - Size of Graph
Number of vertices and edges depends on dictionary

Modified Scrabble dictionary, 5 letter words

Words are vertices
8660 words, 7915 words that are one letter different from
at least one other word

Edge exists between words if they are one letter
different

24,942 edges

Is this graph sparse or dense?

A. Sparse

B. Dense
CS314 Graphs 36

Max number of edges =
N * (N - 1) / 2
37,493,470

Clicker 5 - Unweighted Shortest
Path Algorithm

Problem: Find the shortest word ladder
between two words if one exists

What kind of search should we use?

A. Breadth First Search

B. Depth First Search

C. Either one

CS314 Graphs 37

Unweighted Shortest Path Algorithm

Set distance of start to itself to 0

Create a queue and add the start vertex

while the queue is not empty
remove front

loop through all edges of current vertex
get vertex edge connects to

if this vertex has not been visited (have not found path
to the destination of the edge)

sets its distance to current distance + 1

sets its previous vertex to current vertex

add new vertex to queue

CS314 Graphs 38

CS314 Graphs 39

smart

swart

start

smarm

smalt

scart

Portion of Graph

CS314 Graphs 40

smart

swart

start

smarm

smalt

scart

Start at "smart" and enqueue it
[smart]

CS314 Graphs 41

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart]
CS314 Graphs 42

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start]

CS314 Graphs 43

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart]
CS314 Graphs 44

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt]

CS314 Graphs 45

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt, smarm]
CS314 Graphs 46

smart

swart

start

smarm

smalt

scart

Done with smart, dequeue (swart)

[start, scart, smalt, smarm]

CS314 Graphs 47

smart

swart

start

smarm

smalt

scart

loop through edges of swart (start already present)

[start, scart, smalt, smarm]
CS314 Graphs 48

smart

swart

start

smarm

smalt

scart

loop through edges of swart (scart already present)

[start, scart, smalt, smarm]

CS314 Graphs 49

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm]

swarm

CS314 Graphs 50

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm, sware]

swarm

sware

Unweighted Shortest Path
Implement method

demo

how is path printed?

The diameter of a graph is the longest shortest
past in the graph

How to find?

How to find center of graph?
many measures of centrality

ours: vertex connected to the largest number of
other vertices with the shortest average path length

CS314 Graphs 51

Positive Weighted Shortest Path

Edges in graph are weighted and all weights
are positive

Similar solution to unweighted shortest path

Dijkstra's algorithm

Edsger W. Dijkstra, 1930 2002

UT Professor 1984 - 2000

Algorithm developed in 1956
and published in 1959.

CS314 Graphs 52

Dijkstra on Creating the Algorithm
What is the shortest way to travel from Rotterdam to Groningen, in
general: from given city to given city. It is the algorithm for the
shortest path, which I designed in about twenty minutes. One
morning I was shopping in Amsterdam with my young fiancée, and
tired, we sat down on the café terrace to drink a cup of coffee and I
was just thinking about whether I could do this, and I then designed
the algorithm for the shortest path. As I said, it was a twenty-minute

publication is still readable, it is, in fact, quite nice. One of the
reasons that it is so nice was that I designed it without pencil
and paper. I learned later that one of the advantages of designing
without pencil and paper is that you are almost forced to avoid all
avoidable complexities. Eventually that algorithm became, to my
great amazement, one of the cornerstones of my fame.

Edsger Dijkstra, in an interview with Philip L. Frana,
Communications of the ACM, 2001 (wiki page on the algorithm)

Vertex Class (nested in Graph)

CS314 Graphs 54

private static class Vertex
private String name;
private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms
private double distance;
private Vertex prev;
private int scratch;

// call before finding new paths
public void reset()

Dijkstra's Algorithm
Pick the start vertex

Set the distance of the start vertex to 0 and all
other vertices to INFINITY

While there are unvisited vertices:
Let the current vertex be the vertex with the lowest cost
path from start to it that has not yet been visited

mark current vertex as visited

for each edge from the current vertex
if the sum of the cost of the current vertex and the cost of the
edge is less than the cost of the destination vertex

update the cost of the destination vertex

set the previous of the destination vertex to the current vertex

enqueue this path (not vertex) to the priority queue

THIS IS NOT VISITING THE NEIGHBORING VERTEX
55

Dijkstra's Algorithm
Example of a Greedy Algorithm

A Greedy Algorithm does what appears to be the
best thing at each stage of solving a problem

Gives best solution in Dijkstra's Algorithm

Does NOT always lead to best answer

Fair teams:
(10, 10, 8, 8, 8), 2 teams

Making change with fewest coins
(1, 5, 10) 15 cents

(1, 5, 12) 15 cents
CS314 Graphs 56

57

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 6 - What is the cost of the lowest
cost path from A to E?
A. 5
B. 17
C. 20
D. 28
E. 37

58

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A is start vertex

Set cost of A to 0, all others to INFINITY

Place A in a priority queue

0

59

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(A,0)] pq

dequeue (A,0)

Mark A as visited
60

[] pq

current vertex A:

loop through A's edges

if sum of cost from A to dest is less than current cost

update cost and prev

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

61

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[] pq

A -> C, 0 + 7 < INFINITY

[(C,7)] pq

62

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C,7)] pq

A -> B, 0 + 1 < INFINITY

[(B,1), (C, 7)] pq (Note, the (B,1) jumps in front of (C,7)

63

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7)] pq

A -> G, 0 + 17 < INFINITY

[(B,1), (C, 7), (G, 17)] pq

64

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7), (G, 17)] pq

current vertex B:

loop through B's edges

if sum of cost from B to edge is less than current cost

update cost and prev

65

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17)] pq

B -> C, 1 + 3 < 7

update C's cost and previous

[(C, 4), (C, 7), (G, 17)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

66

[(C, 4), (C, 7), (G, 17)] pq

B -> D, 1 + 21 < INFINITY

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

67

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

current vertex is C, cost 4

loop through C's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

68

[(C, 7), (G, 17), (D, 22)] pq

C -> A, 7 + 4 !< 0, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

69

[(C, 7), (G, 17), (D, 22)] pq

C -> B, 4 + 3 !< 1, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

70

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17), (D, 22)] pq

C -> F, 4 + 3 < INFINITY

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

71

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

current vertex is C

Already visited so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

72

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(F, 7), (G, 17), (D, 22)] pq

current vertex is F

loop through F's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

73

[(G, 17), (D, 22)] pq

F -> C, 7 + 3 !< 4, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

74

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (D, 22)] pq

F -> D, 7 + 4 < 22

update D's cost and previous

[(D, 11), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Aside - Implementing Dijkstra's
Create a Path class to allow for multiple
paths and distances (costs) to a given vertex

private static class Path

implements Comparable<Path> {

private Vertex dest;

private double cost;

Use a priority queue of Paths to store the
vertices and distances

CS314 Graphs 75

Why? References!!!
Slide 74 and 78, adding new, lower cost path
to Vertex D

Abstractly: [(G, 17), (D, 22)] becomes
[(D, 11) (G, 17), (D, 22)]

What does priority queue store? References
to Vertex Objects

[,]

76distance 17

Vertex
name G

distance 22

Vertex
name D

Lower Cost Path to D
New, lower cost path to D. Alter Vertex D's
distance to 11 and add to priority queue

[, ,]

PROBLEMS?????

Abstractly [(D, 11), (G, 17), (D, 11)] 77

distance 17

Vertex
name G

distance 11

Vertex
name D

78

[(D, 11), (G, 17), (D, 22)] pq

current vertex is D

loop through D's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

79

[(G, 17), (D, 22)] pq

D -> B, 11 + 21 !< 1, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

80

[(G, 17), (D, 22)] pq

D -> E, 11 + 6 < INFINITY

update E's cost and previous

[(G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

81

[(G, 17), (E, 17), (D, 22)] pq

D -> F, 4 + 11 !< 7, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

82

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

D -> G, 11 + 5 < 17

update G's cost and previous

[(G, 16), (G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

83

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

current vertex is G

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

84

[(E, 17), (D, 22)] pq

current vertex is E

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

85

No unvisited vertices.

Each Vertex stores cost (distance) of lowest cost

path from start Vertex to itself and previous vertex

in path from start vertex to itself.

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7
Alternatives to Dijkstra's Algorithm

A*, pronounced "A Star"

A heuristic, goal of finding shortest weighted path
from single start vertex to goal vertex

Uses actual distance like Dijkstra's but also
estimates remaining cost or distance

distance is set to current distance from start PLUS the
estimated distance to the goal

For example when finding a path between towns,
estimate the remaining distance as the straight-line
(as the crow flies) distance between current
location and goal.

CS314 Graphs 86

Spanning Tree
Spanning Tree: A tree of edges that
connects all the vertices in a graph

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 7 -
Minimum Spanning Tree

Minimum Spanning Tree: A spanning tree in
a weighted graph with the lowest total cost

used in network design, taxonomy, Image registration,
and more!

88

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7
Cost of spanning
tree shown?
A. 6

B. 7
C. 29
D. 61

E. None of These

Prim's Algorithm
Initially created by Jarník

Rediscovered by Prim (of Sweetwater, TX)
and Dijkstra

Pick a vertex arbitrarily from graph
In other words, it doesn't matter which one

Add lowest cost edge between the tree and
a vertex that is not part of the tree UNTIL
every vertex is part of the tree

Greedy Algorithm, very similar to Dijkstra's

CS314 Graphs 89

Prim's Algorithm

CS314 Graphs 90

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Pick D as root

5 8 4

Prim's Algorithm

CS314 Graphs 91

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
2 from D to A (or C)

5 8 4

Prim's Algorithm

CS314 Graphs 92

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
2 from D to C (OR from A to B)

5 8 4

Prim's Algorithm

CS314 Graphs 93

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
2 from A to B

5 8 4

Prim's Algorithm

CS314 Graphs 94

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
5 from D to G

5 8 4

Prim's Algorithm

CS314 Graphs 95

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
1 from G to F

5 8 4

Prim's Algorithm

CS314 Graphs 96

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
6 from G to E

5 8 4

Prim's Algorithm

CS314 Graphs 97

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Pick D as root

Prim's Algorithm

CS314 Graphs 98

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?
4 from D to F

Prim's Algorithm

CS314 Graphs 99

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from F to C

Prim's Algorithm

CS314 Graphs 100

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from C to B

Prim's Algorithm

CS314 Graphs 101

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

1 from B to A

Prim's Algorithm

CS314 Graphs 102

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

5 from D to G

Prim's Algorithm

CS314 Graphs 103

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

6 from D to E

Prim's Algorithm

CS314 Graphs 104

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Cost of Spanning Tree?

Other Graph Algorithms
Lots!
http://en.wikipedia.org/wiki/Category:Graph_algorithms

CS314 Graphs 105

Topic 22
Hash Tables

"hash collision n. [from the techspeak] (var. `hash clash') When
used of people, signifies a confusion in associative memory or
imagination, especially a persistent one (see thinko).

True story: One of us was once on the phone with a friend
about to move out to Berkeley. When asked what he expected
Berkeley to be like, the friend replied: 'Well, I have this mental
picture of naked people throwing Molotov cocktails, but I think
that's just a collision in my hash tables.'"

-The Hacker's Dictionary

CS314 Hash Tables 2

Programming Pearls by Jon Bentley

Jon was senior programmer on a
large programming project.

Senior programmer spend a lot of
time helping junior programmers.

Junior programmer to Jon: "I need
help writing a sorting algorithm."

CS314 Hash Tables 3

A Problem
From Programming Pearls (Jon in Italics)
Why do you want to write your own sort at all? Why not use a sort
provided by your system?
I need the sort in the middle of a large system, and for obscure
technical reasons, I can't use the system file-sorting program.
What exactly are you sorting? How many records are in the file?
What is the format of each record?
The file contains at most ten million records; each record is a
seven-digit integer.
Wait a minute. If the file is that small, why bother going to disk at
all? Why not just sort it in main memory?
Although the machine has many megabytes of main memory,
this function is part of a big system. I expect that I'll have only
about a megabyte free at that point.
Is there anything else you can tell me about the records?
Each one is a seven-digit positive integer with no other associated
data, and no integer can appear more than once.

System Sort

CS314 Hash Tables 4

Starting Other Programs

CS314 Hash Tables 5

Starting Other Programs

CS314 Hash Tables 6

CS314 Hash Tables 7

Clicker 1 and 2
When did this conversation take place?

A. circa 1965

B. circa 1975

C. circa 1985

D. circa 1995

E. circa 2005

What were they sorting?

A. SSNs. B. Random values C. Street Addresses

D. Personal Incomes E. Phone Numbers
CS314 Hash Tables 8

A Solution
/* phase 1: initialize set to empty */
for i = [0, n)

bit[i] = 0

/* phase 2: insert present elements into the set */
for each num_in_file in the input file

bit[num_in_file] = 1

/* phase 3: write sorted output */
for i = [0, n)

if bit[i] == 1 write i on the output file

CS314 Hash Tables 9

Some Structures so Far
ArrayLists

O(1) access
O(N) insertion (average case), better at end
O(N) deletion (average case)

LinkedLists
O(N) access
O(N) insertion (average case), better at front and back
O(N) deletion (average case), better at front and back

Binary Search Trees
O(log N) access if balanced
O(log N) insertion if balanced
O(log N) deletion if balanced

10

Why are Binary Trees Better?
Divide and Conquer - splitting problem into
smaller problems

Can we reduce the work by a bigger factor?
3? 10? More?

An ArrayList does this in a way when
accessing elements

but must use an integer value

each position holds a single element

given the index in an array, I can access that
element rather quickly

determining the address of the element
requires a multiply op and an add op

Hash Tables
Hash Tables maintaining the fast access of
arrays but improve the order for insertion,
and deletion compare to array based lists.

Hash tables use an array and hash functions
to determine the index for each element.

CS314 Hash Tables 12

Hash Functions
Hash: "From the French hatcher,
which means 'to chop'. "

to hash to mix randomly or shuffle (To cut
up, to slash or hack about; to mangle)

Hash Function: Take a piece of data and
transforms it to a different piece of data
(typically smaller), usually a single integer.

A function or algorithm

The input need not be integers!

CS314 Hash Tables 13

Hash Function

"Mike Scott"

Manchester, VT

mscott61729@gmail.com

12
hash
function

"Olivia"

5/17/1971

555389085

"Kelly"

"Isabelle"

Hash Functions
Like a fingerprint

134 Megabytes
CS314 Hash Tables 14

Hash Function
SHA 512 Hash code

CS314 Hash Tables 15 CS314 Hash Tables 16

Simple Example
Assume we are using names as our key

take 3rd letter of name, take int value of letter
(a = 0, b = 1, ...), divide by 6 and take remainder

What does "Bellers" hash to?

L -> 11 -> 11 % 6 = 5

CS314 Hash Tables 17

Result of Hash Function
Mike = (10 % 6) = 4
Kelly = (11 % 6) = 5
Olivia = (8 % 6) = 2
Isabelle = (0 % 6) = 0
David = (21 % 6) = 3
Margaret = (17 % 6) = 5 (uh oh)
Wendy = (13 % 6) = 1
This is an imperfect hash function. A perfect hash
function yields a one to one mapping from the keys
to the hash values.
What is the maximum number of values this
function can hash perfectly?

Clicker 3 - Hash Function
Assume the hash function for String adds up
the Unicode value for each character.

public int hashCode(String s) {
int result = 0;
for (int i = 0; i < s.length(); i++)

result += s.charAt(i);
return result;

}

Hashcode for "DAB" and "BAD"?
A. 301 103
B. 4 4
C. 412 214
D. 5 5
E. 199 199

18

CS314 Hash Tables 19

More on Hash Functions
transform the key (which may not be an
integer) into an integer value

The transformation can use one of four
techniques

Mapping

Folding

Shifting

Casting

CS314 Hash Tables 20

Hashing Techniques
Mapping

As seen in the example

integer values or things that can be easily
converted to integer values in key

Folding
partition key into several parts and the integer
values for the various parts are combined

the parts may be hashed first

combine using addition, multiplication, shifting,
logical exclusive OR

CS314 Hash Tables 21

Shifting
More complicated with shifting

int hashVal = 0;
int i = str.length() - 1;
while(i > 0)
{ hashVal = (hashVal << 1) + (int) str.charAt(i);
i--;

}

different answers for "dog" and "god"

Shifting may give a better range of hash values
when compared to just folding

Casts
Very simple

essentially casting as part of fold and shift when working
with chars.

CS314 Hash Tables 22

The Java String class
hashCode method

public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {

char[] val = value;
for (int i = 0; i < val.length; i++) {

h = 31 * h + val[i];
}
hash = h;

}
return h;

}

CS314 Hash Tables 23

Mapping Results
Transform hashed key value into a legal index in
the hash table

Hash table is normally uses an array as its
underlying storage container

Normally get location on table by taking result of
hash function, dividing by size of table, and taking
remainder
index = key mod n

n is size of hash table

empirical evidence shows a prime number is best

10 element hash table, move up to 11 or 13 elements

CS314 Hash Tables 24

Mapping Results

"Isabelle" 230492619
hashCode
method

230492619 % 997 = 177

0 1 2 3177............ 996

"Isabelle"

CS314 Hash Tables 25

Handling Collisions
What to do when inserting an element and
already something present?

CS314 Hash Tables 26

Open Addressing
Could search forward or backwards
for an open space
Linear probing:

move forward 1 spot. Open?, 2 spots, 3
spots
reach the end?
When removing, insert a blank
null if never occupied, blank if once
occupied

Quadratic probing
1 spot, 2 spots, 4 spots, 8 spots, 16 spots

Resize when load factor reaches
some limit

CS314 Hash Tables 27

Closed Addressing: Chaining
Each element of hash table be
another data structure

linked list, balanced binary tree

More space, but somewhat easier

everything goes in its spot

What happens when resizing?
Why don't things just collide again?

CS314 Hash Tables 28

Hash Tables in Java
hashCode method in Object

hashCode and equals
"If two objects are equal according to the equals
(Object) method, then calling the hashCode
method on each of the two objects must produce
the same integer result. "
if you override equals you need to override
hashCode

Overriding one of equals and hashCode, but not
the other, can cause logic errors that are difficult to
track down if objects added to hash tables.

CS314 Hash Tables 29

Hash Tables in Java
HashTable class

HashSet class
implements Set interface with internal storage
container that is a HashTable

compare to TreeSet class, internal storage
container is a Red Black Tree

HashMap class
implements the Map interface, internal storage
container for keys is a hash table

Comparison
Compare these data structures for speed:

Java HashSet

Java TreeSet

our naïve Binary Search Tree

our HashTable

Insert random ints

CS314 Hash Tables 30

Clicker 4
What will be order from fastest to slowest?

A. HashSet TreeSet HashTable314 BST

B. HashSet HashTable314 TreeSet BST

C. TreeSet HashSet BST HashTable314

D. HashTable314 HashSet BST TreeSet

E. None of these

CS314 Hash Tables 31

Topic 23
Red Black Trees

"People in every direction
No words exchanged
No time to exchange
And all the little ants are marching
Red and Black antennas waving"

-Ants Marching, Dave Matthew's Band

"Welcome to L.A.'s Automated Traffic Surveillance and Control Operations
Center. See, they use video feeds from intersections and specifically
designed algorithms to predict traffic conditions, and thereby control traffic
lights. So all I did was come up with my own... kick ass algorithm to
sneak in, and now we own the place."

-Lyle, the Napster, (Seth Green), The Italian Job

Clicker 1
2000 elements are inserted one at a time
into an initially empty binary search tree
using the simplenaive algorithm. What is the
maximum possible height of the
resulting tree?

A. 1

B. 11

C. 21

D. 500

E. 1999
CS314

Red Black Trees
2

CS314
Red Black Trees

3

Binary Search Trees
Average case and worst case Big O for

insertion

deletion

access

Balance is important. Unbalanced trees give
worse than log N times for the basic tree
operations

Can balance be guaranteed?

CS314
Red Black Trees

4

Red Black Trees
A BST with more complex algorithms to
ensure balance

Each node is labeled as Red or Black.

Path: A unique series of links (edges)
traverses from the root to each node.

The number of edges (links) that must be
followed is the path length

In Red Black trees paths from the root to
elements with 0 or 1 child are of particular
interest

CS314
Red Black Trees

5

Paths to Single or Zero Child
Nodes

How many? 19

12 35

3 16 5621

1

CS314
Red Black Trees

6

Red Black Tree Rules
1. Is a binary search tree

2. Every node is colored either red or
black

3. The root of the whole tree is black

4. If a node is red its children must be
black. (a.k.a. the red rule)

5. Every path from a node to a null link
must contain the same number of black
nodes (a.k.a. the path rule)

CS314
Red Black Trees

7

Example of a Red Black Tree

The root of a Red Black tree is black

Every other node in the tree follows these rules:
Rule 3: If a node is Red, all of its children are Black

Rule 4: The number of Black nodes must be the same in all paths
from the root node to null nodes

19

12 35

3 16 5621

30
CS314

Red Black Trees
8

Red Black Tree?
19

12 35

0

-10

-5

50

75

135

Clicker 2
Is the tree on the previous slide a binary
search tree? Is it a red black tree?

BST? Red-Black?

A. No No

B. No Yes

C. Yes No

D. Yes Yes

CS314
Red Black Trees

9 CS314
Red Black Trees

10

Red Black Tree?

19

12 35

3 16

0

Perfect?
Full?

Complete?

Clicker 3
Is the tree on the previous slide a binary
search tree? Is it a red black tree?

BST? Red-Black?

A. No No

B. No Yes

C. Yes No

D. Yes Yes

CS314
Red Black Trees

11 CS314
Red Black Trees

12

Implications of the Rules
If a Red node has any children, it must have
two children and they must be Black. (Why?)

If a Black node has only one child that child
must be a Red leaf. (Why?)

Due to the rules there are limits on how
unbalanced a Red Black tree may become.

on the previous example may we hang a new
node off of the leaf node that contains 0?

Properties of Red Black Trees
If a Red Black Tree is complete, with all
Black nodes except for Red leaves at the
lowest level the height will be minimal, ~log N

To get the max height for N elements there
should be as many Red nodes as possible
down one path and all other nodes are Black

This means the max height would b approximately
2 * log N (don't use this as a formula)

typically less than this

see example on next slide

interesting exercise, draw max height tree with N nodes

CS314
Red Black Trees

14

Max Height Red Black Tree
14

12 35

56

43 99

21
1 13

15 25

80 100

70
14 nodes, height 5

CS314
Red Black Trees

15

Maintaining the Red Black
Properties in a Tree

Insertions

Must maintain rules of Red Black Tree.

New Node always a leaf
can't be black or we will violate rule 4

therefore the new leaf must be red

If parent is black, done (trivial case)

if parent red, things get interesting because a red
leaf with a red parent violates rule 3

CS314
Red Black Trees

16

Insertions with Red Parent - Child

30

15 70

85

80 90

60
10 20

50 65
5

40 55

Must modify tree when insertion would result in

Red Parent - Child pair using color changes and

rotations.

CS314
Red Black Trees

17

Case 1
Suppose sibling of parent is Black.

by convention null nodes are black

In the previous tree, true if we are inserting a
3 or an 8.

What about inserting a 99? Same case?

Let X be the new leaf Node, P be its Red
Parent, S the Black sibling and G, P's and
S's parent and X's grandparent

What color is G?

CS314
Red Black Trees

18

Case 1 - The Picture

G

P S

ED
X C

A B

Relative to G, X could be an inside or outside node.
Outside -> left left or right right moves
Inside -> left right or right left moves

CS314
Red Black Trees

19

Fixing the Problem

G

P S

ED
X C

A B
If X is an outside node a single

rotation between P and G fixes the problem.
A rotation is an exchange of roles between a parent
and child node. So P becomes G's parent. Also must
recolor P and G.

CS314
Red Black Trees

20

Single Rotation
P

X G

S
CA B

ED
Apparent rule violation?
Recall, S is null if X is a leaf, so no problem

If this occurs higher in the tree (why?) subtrees A, B,
and C will have one more black node than D and E.

CS314
Red Black Trees

21

Case 2
What if X is an inside node relative to G?

a single rotation will not work

Must perform a double rotation
rotate X and P

rotate X and G G

P S

EDXA

B C

First Rotation
Rotate P and X, no color change

What does this actually do?
CS314

Red Black Trees
22

G

P

S

ED

X

A B

C

CS314
Red Black Trees

23

After Double Rotation

X

P G

S
CA B

ED

CS314
Red Black Trees

24

Case 3
Sibling is Red, not Black

G

P S

ED
X

B

C

A

Any problems?

CS314
Red Black Trees

25

Fixing Tree when S is Red
Must perform single rotation between parent,
P and grandparent, G, and then make
appropriate color changes

P

X G

E

CBA S

D

CS314
Red Black Trees

26

More on Insert
Problem: What if on the previous example
G's parent (GG!) had been red?
Easier to never let Case 3 ever occur!
On the way down the tree, if we see a node X that
has 2 Red children, we make X Red and its two
children black.

if recolor the root, recolor it to black
the number of black nodes on paths below X remains
unchanged
If X's parent was Red then we have introduced 2
consecutive Red nodes.(violation of rule)
to fix, apply rotations to the tree, same as inserting node

CS314
Red Black Trees

27

Example of Inserting Sorted Numbers
1 2 3 4 5 6 7 8 9 10

1

Insert 1. A leaf so

red. Realize it is

root so recolor

to black.

1

CS314
Red Black Trees

28

Insert 2

1

2

make 2 red. Parent

is black so done.

CS314
Red Black Trees

29

Insert 3

1

2

3

Insert 3. Parent is red.
Parent's sibling is black
(null) 3 is outside relative
to grandparent. Rotate

parent and grandparent
2

1 3

On way down see
2 with 2 red children.
Recolor 2 red and
children black.

CS314
Red Black Trees

30

Insert 4

2

1 3

2

1 3

4

When adding 4
parent is black
so done.

Set root to black!

2

1 3

CS314
Red Black Trees

31

Insert 5

2

1 3

4

5

5's parent is red.
Parent's sibling is
black (null). 5 is
outside relative to
grandparent (3) so rotate
parent and grandparent then
recolor

CS314
Red Black Trees

32

Finish insert of 5

2

1 4

3 5

CS314
Red Black Trees

33

Insert 6

2

1 4

3 5

On way down see
4 with 2 red
children. Make
4 red and children
black. 4's parent is
black so no problem.

CS314
Red Black Trees

34

Finishing insert of 6

2

1 4

3 5

6

6's parent is black
so done.

CS314
Red Black Trees

35

Insert 7

2

1 4

3 5

6

7

7's parent is red.
Parent's sibling is
black (null). 7 is
outside relative to
grandparent (5) so
rotate parent and
grandparent then recolor

CS314
Red Black Trees

36

Finish insert of 7

2

1 4

3 6

5 7

CS314
Red Black Trees

37

Insert 8

2

1 4

3 6

5 7

The caveat!!!
Getting unbalanced
on that right subtree?!?

On way down see 6
with 2 red children.
Make 6 red and
children black. This
creates a problem
because 6's parent, 4, is
also red. Must perform
rotation.

CS314
Red Black Trees

38

Still Inserting 8

2

1 4

3 6

5 7

Recolored now
need to
rotate.

Recall, the subtrees
and the one extra
black node.

CS314
Red Black Trees

39

Finish inserting 8

4

2

3

6

5 71

8

Result of
rotation

CS314
Red Black Trees

40

Insert 9

4

2

3

6

5 71

8

9

On way down see 4 has two red children
so recolor 4 red and children black.
Realize 4 is the root so recolor black

CS314
Red Black Trees

41

Finish Inserting 9

4

2

3

6

5 81

7 9
After rotations and recoloring

CS314
Red Black Trees

42

Insert 10

4

2

3

6

5 81

7 9On way down see 8 has two
red children so change 8 to
red and children black 10

CS314
Red Black Trees

43

Insert 11

4

2

3

6

5 81

7 9

10

11

Again a rotation is
needed.

CS314
Red Black Trees

44

Finish inserting 11

4

2

3

6

5 81

7 10

9 11

Topic 24
Heaps

"You think you know when you can learn,
are more sure when you can write,
even more when you can teach,
but certain when you can program."

- Alan Perlis

Priority Queue
Recall priority queue

elements enqueued based on priority

dequeue removes the highest priority item

Options?
List? Binary Search Tree? Clicker 1

Linked List enqueue BST enqueue
A. O(N) O(1)

B. O(N) O(logN)

C. O(N) O(N)

D. O(logN) O(logN)

E. O(1) O(logN)
CS314 Heaps 2

Another Option
The heap data structure

not to be confused with the runtime heap (portion
of memory for dynamically allocated variables)

Typically a complete binary tree (variations
with more than 2 children possible)

all levels have maximum number of nodes
except deepest where nodes are filled in from
left to right

Maintains the heap order property
in a min heap the value in the root of any subtree
is less than or equal to all other values in the
subtreeCS314 Heaps 3

Clicker 2
In a max heap with no duplicates where is
the largest value?

A. the root of the tree

B. in the left-most node

C. in the right-most node

D. a node in the lowest level

E. none of these

CS314 Heaps 4

Example Min Heap

CS314 Heaps 5

12

17 15

19 52 37 25

45 21

Add Operation
Add new element to next open spot in array

Swap with parent if new value is less
than parent

Continue back up the tree as long as the
new value is less than new parent node

CS314 Heaps 6

Add Example
Add 15 to heap (initially next left most node)

CS314 Heaps 7

12

17 15

19 52 37 25

45 21 15

Add Example
Swap 15 and 52

CS314 Heaps 8

12

17 15

19 15 37 25

45 21 52

Enqueue Example
Swap 15 and 17, then stop

CS314 Heaps 9

12

15 15

19 17 37 25

45 21 52

Add Example
Insert the following values 1 at a time into a
min heap:
16 9 5 8 13 8 8 5 5 19 27 9 3

CS314 Heaps 10

Internal Storage
Interestingly heaps are often implemented
with an array instead of nodes

CS314 Heaps 11

12

17 15

19 52 37 25

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 17 15 19 52 37 25 45 21

for element at index i:

parent index: i / 2

left child index: i * 2

right child index: i * 2 + 1

CS314 Heaps 12

In Honor of
Elijah,
The Meme King,

Spring 2020

PriorityQueue Class

CS314 Heaps 13

public class PriorityQueue<E extends Comparable<? super E>>
{

private int size;

private E[] con;

public PriorityQueue() {

con = getArray(2);

}

private E[] getArray(int size) {

return (E[]) (new Comparable[size]);

}

PriorityQueue enqueue / add

14

public void enqueue(E val) {
if (size >= con.length - 1)

enlargeArray(con.length * 2);

size++;
int indexToPlace = size;
while (indexToPlace > 1

&& val.compareTo(con[indexToPlace / 2]) < 0) {

con[indexToPlace] = con[indexToPlace / 2]; // swap
indexToPlace /= 2; // change indexToPlace to parent

}
con[indexToPlace] = val;

}

private void enlargeArray(int newSize) {
E[] temp = getArray(newSize);
System.arraycopy(con, 1, temp, 1, size);
con = temp;

}

Enqueue / add Example
With Array Shown

Add 15 to heap
(initially next
left most node)

12

17 15

19 52 37 25

45 21 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 17 15 19 52 37 25 45 21 15

10 / 2 = 5 (index of parent)

Enqueue Example
With Array Shown

Swap 15 and 52
12

17 15

19 15 37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 17 15 19 15 37 25 45 21 52

5 / 2 = 2 (index of parent)

Enqueue Example
With Array Shown

Swap 15 and 17
12

17

15

19

15

37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 15 15 19 17 37 25 45 21 52

2 / 2 = 1 (index of parent)

Enqueue Example
With Array Shown

15 !< 12 -> DONE
12

17

15

19

15

37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 15 16 19 17 37 25 45 21 52

2 / 1 = 1 (index of parent)

Remove -> remove 12

CS314 Heaps 19

12

17

15

19

15

37 25

45 21 52

Remove / Dequeue
min value / front of queue is in root of tree

swap value from last node to root and move
down swapping with smaller child unless
values is smaller than both children

CS314 Heaps 20

Dequeue Example
Swap 35
into root
(save 12
to return)

12

15 13

17 23 45 53

45 21 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 15 13 17 23 45 53 45 21 35

Dequeue Example
Swap 35
into root
(save 12
to return)

35

15 13

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
35 15 13 17 23 45 53 45 21

Dequeue Example
Min child?

1 * 2 = 2 -> 15

1 * 2 + 1 = 3 -> 13

Swap with 13

35

15 13

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
35 15 13 17 23 45 53 45 21

Dequeue Example

13

15 35

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
13 15 35 17 23 45 53 45 21

Dequeue Example

13

15 35

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
13 15 35 17 23 45 53 45 21

Min child?

3 * 2 = 6 -> 45

3 * 2 + 1 = 7 -> 53

Less than or equal to
both of my children!
Stop!

Dequeue Code

26

public E dequeue() {
E top = con[1];
int hole = 1;
boolean done = false;
while (hole * 2 < size && ! done) {

int child = hole * 2;
// see which child is smaller
if (con[child].compareTo(con[child + 1]) > 0)

child++; // child now points to smaller

// is replacement value bigger than child?
if (con[size].compareTo(con[child]) > 0) {

con[hole] = con[child];
hole = child;

}
else

done = true;
}
con[hole] = con[size];
size--;
return top;

}

Clicker 3 - PriorityQueue Comparison
Run a Stress test of PQ implemented with
Heap and PQ implemented with
BinarySearchTree

What will result be?

A. Heap takes half the time or less of BST

B. Heap faster, but not twice as fast

C. About the same

D. BST faster, but not twice as fast

E. BST takes half the time or less of Heap

CS314 Heaps 27

Topic 26
Dynamic Programming

"Thus, I thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So I
used it as an umbrella for my activities"

- Richard E. Bellman

Origins
A method for solving complex problems by
breaking them into smaller, easier, sub
problems

Term Dynamic Programming coined by
mathematician Richard Bellman in early
1950s

employed by Rand Corporation

Rand had many, large military contracts

Secretary of Defense, Charles Wilson

how could any one oppose "dynamic"?

CS314 Dynamic Programming 2

Dynamic Programming
Break big problem up into smaller
problems ...

Sound familiar?

Recursion?
N! = 1 for N == 0
N! = N * (N - 1)! for N > 0

CS314 Dynamic Programming 3

Fibonacci Numbers

F1 = 1

F2 = 1

FN = FN - 1 + FN - 2

Recursive Solution?

CS314 Dynamic Programming 4

Failing Spectacularly
Naïve recursive method

Clicker 1 - Order of this method?
A. O(1) B. O(log N) C. O(N) D. O(N2) E. O(2N)

CS314 Dynamic Programming 5

// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {

if (n <= 2)
return 1;

else
return fib(n 1) + fib (n 2);

}

Failing Spectacularly

CS314 Dynamic Programming 6

Failing Spectacularly

CS314 Dynamic Programming 7

Clicker 2 - Failing Spectacularly

How long to calculate the 70th Fibonacci
Number with this method?

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these

CS314 Dynamic Programming 8

Aside - Overflow
at 47th Fibonacci number overflows int

Could use BigInteger class instead

CS314 Dynamic Programming 9

private static final BigInteger one
= new BigInteger("1");

private static final BigInteger two
= new BigInteger("2");

public static BigInteger fib(BigInteger n) {
if (n.compareTo(two) <= 0)

return one;
else {

BigInteger firstTerm = fib(n.subtract(two));
BigInteger secondTerm = fib(n.subtract(one));
return firstTerm.add(secondTerm);

}
}

Aside - BigInteger
Answers correct beyond 46th Fibonacci number

Even slower, math on BigIntegers,
object creation, and garbage collection

CS314 Dynamic Programming 10

Slow Fibonacci
Why so slow?

Algorithm keeps calculating the same
value over and over

When calculating the 40th Fibonacci
number the algorithm calculates the 4th

Fibonacci number 24,157,817 times!!!

CS314 Dynamic Programming 11

Fast Fibonacci
Instead of starting with the big problem
and working down to the small problems

... start with the small problem and
work up to the big problem

CS314 Dynamic Programming 12

public static BigInteger fastFib(int n) {
BigInteger smallTerm = one;
BigInteger largeTerm = one;
for (int i = 3; i <= n; i++) {

BigInteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm = temp;

}
return largeTerm;

}

Fast Fibonacci

CS314 Dynamic Programming 13

Fast Fibonacci

CS314 Dynamic Programming 14

Memoization
Store (cache) results from
computations for later lookup

Memoization of Fibonacci Numbers

CS314 Dynamic Programming 15

public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE
= new BigInteger("1");

static {
lookupTable = new ArrayList<>();
lookupTable.add(null);
lookupTable.add(ONE);
lookupTable.add(ONE);

}

Fibonacci Memoization
public static BigInteger fib(int n) {

// check lookup table
if (n < lookupTable.size()) {

return lookupTable.get(n);
}

// Calculate nth Fibonacci.
// Don't repeat work. Start with the last known.
BigInteger smallTerm

= lookupTable.get(lookupTable.size() - 2);
BigInteger largeTerm

= lookupTable.get(lookupTable.size() - 1);
for(int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
lookupTable.add(largeTerm); // memo
smallTerm = temp;

}
return largeTerm;

}

Dynamic Programming
When to use?

When a big problem can be broken up into sub
problems.

Solution to original problem can be
calculated from results of smaller problems.

larger problems depend on previous solutions

Sub problems must have a natural ordering
from smallest to largest (simplest to
hardest)

Multiple techniques within DP
CS314 Dynamic Programming 17

DP Algorithms
Step 1: Define the *meaning* of the subproblems
(in English for sure, Mathematically as well if you
find it helpful).

Step 2: Show where the solution will be found.

Step 3: Show how to set the first subproblem.

Step 4: Define the order in which the subproblems
are solved.

Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)

CS314 Dynamic Programming 18

Dynamic Programming Requires:

overlapping sub problems:
problem can be broken down into sub problems

obvious with Fibonacci

Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

optimal substructure:
the optimal solution for a problem can be
constructed from optimal solutions of its sub
problems

In Fibonacci just sub problems, no optimality

min coins opt(36) = 112 + opt(24) [1, 5, 12]
CS314 Dynamic Programming 19

Dynamic Programing Example
Another simple example

Finding the best solution involves finding the
best answer to simpler problems

Given a set of coins with values (V1, V2 N)
and a target sum S, find the fewest coins
required to equal S
What is Greedy Algorithm approach?

Does it always work?

{1, 5, 12} and target sum = 15 (12, 1, 1, 1)

CS314 Dynamic Programming 20

Minimum Number of Coins
To find minimum number of coins to sum to
15 with values {1, 5, 12} start with sum 0

recursive backtracking would likely start with 15

Let M(S) = minimum number of coins to sum
to S

At each step look at target sum,
coins available, and previous sums

pick the smallest option

CS314 Dynamic Programming 21

Minimum Number of Coins
M(0) = 0 coins

M(1) = 1 coin (1 coin)

M(2) = 2 coins (1 coin + M(1))

M(3) = 3 coins (1 coin + M(2))

M(4) = 4 coins (1 coin + M(3))

M(5) = interesting, 2 options available:
1 + others OR single 5

if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1
clearly better to pick the coin worth 5

CS314 Dynamic Programming 22

Minimum Number of Coins
M(0) = 0

M(1) = 1 (1 coin)

M(2) = 2 (1 coin + M(1))

M(3) = 3 (1 coin + M(2))

M(4) = 4 (1 coin + M(3))

M(5) = 1 (1 coin + M(0))

M(6) = 2 (1 coin + M(5))

M(7) = 3 (1 coin + M(6))

M(8) = 4 (1 coin + M(7))

M(9) = 5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))
options: 1, 5

M(11) = 2 (1 coin + M(10))
options: 1, 5

M(12) = 1 (1 coin + M(0))
options: 1, 5, 12

M(13) = 2 (1 coin + M(12))
options: 1, 12

M(14) = 3 (1 coin + M(13))
options: 1, 12

M(15) = 3 (1 coin + M(10))
options: 1, 5, 12

CS314 Dynamic Programming 23

KNAPSACK PROBLEM -
RECURSIVE BACKTRACKING
AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 24

Knapsack Problem
A variation of a bin packing problem

Similar to fair teams problem from
recursion assignment

You have a set of items

Each item has a weight and a value

You have a knapsack with a weight limit

Goal: Maximize the value of the items you
put in the knapsack without exceeding the
weight limit

CS314 Dynamic Programming 25

Knapsack Example
Items:

Weight
Limit = 8

One greedy solution: Take the highest ratio
item that will fit: (1, 6), (2, 11), and (4, 12)

Total value = 6 + 11 + 12 = 29

Clicker 3 - Is this optimal? A. No B. Yes

Item
Number

Weight
of Item

Value of
Item

Value
per unit
Weight

1 1 6 6.0

2 2 11 5.5

3 4 1 0.25

4 4 12 3.0

5 6 19 3.167

6 7 12 1.714

Knapsack - Recursive Backtracking
private static int knapsack(ArrayList<Item> items,

int current, int capacity) {

int result = 0;
if (current < items.size()) {

// don't use item
int withoutItem

= knapsack(items, current + 1, capacity);
int withItem = 0;
// if current item will fit, try it
Item currentItem = items.get(current);
if (currentItem.weight <= capacity) {

withItem += currentItem.value;
withItem += knapsack(items, current + 1,

capacity - currentItem.weight);
}
result = Math.max(withoutItem, withItem);

}
return result;

}

Knapsack - Dynamic Programming
Recursive backtracking starts with max
capacity and makes choice for items:
choices are:

take the item if it fits

don't take the item

Dynamic Programming, start with
simpler problems

Reduce number of items available

Creates a 2d array of possibilities
CS314 Dynamic Programming 28

Knapsack - Optimal Function
OptimalSolution(items, weight) is best
solution given a subset of items and a weight
limit

2 options:

OptimalSolution does not select ith item
select best solution for items 1 to i - 1with weight
limit of w

OptimalSolution selects ith item
New weight limit = w - weight of ith item

select best solution for items 1 to i - 1with new
weight limit 29

Knapsack Optimal Function
OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of
ith item is greater than allowed weight
wi > w (In others ith item doesn't fit)

max of (OptimalSolution(items - 1, w),
value of ith item +
OptimalSolution(items - 1, w - wi)

CS314 Dynamic Programming 30

Knapsack - Algorithm
Create a 2d array to store
value of best option given
subset of items and

possible weights

In our example 0 to 6
items and weight limits of of 0 to 8

Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Item
Number

Weight
of Item

Value of
Item

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

Knapsack Algorithm
Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
M[0, w] = 0

For item = 1 to N
for weight = 1 to WeightLimit

if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]

else
M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]

Knapsack - Table

CS314 Dynamic Programming 33

Item Weight Value

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

items / capacity 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0
{1}

{1,2}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6}

Knapsack - Completed Table

CS314 Dynamic Programming 34

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}
[1, 6]

0 6 6 6 6 6 6 6 6
{1,2}
[2, 11]

0 6 11 17 17 17 17 17 17
{1, 2, 3}
[4, 1]

0 6 11 17 17 17 17 18 18

{1, 2, 3, 4}
[4, 12]

0 6 11 17 17 18 23 29 29
{1, 2, 3, 4, 5}
[6, 19]

0 6 11 17 17 18 23 29 30
{1, 2, 3, 4, 5, 6}
[7, 12]

0 6 11 17 17 18 23 29 30

Knapsack - Items to Take

CS314 Dynamic Programming 35

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}
[1, 6]

0 6 6 6 6 6 6 6 6
{1,2}
[2, 11]

0 6 11 17 17 17 17 17 17
{1, 2, 3}
[4, 1]

0 6 11 17 17 17 17 17 17

{1, 2, 3, 4}
[4, 12]

0 6 11 17 17 18 23 29 29
{1, 2, 3, 4, 5}
[6, 19]

0 6 11 17 17 18 23 29 30
{1, 2, 3, 4, 5, 6}
[7, 12]

0 6 11 17 17 18 23 29 30

Dynamic Knapsack
// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {

final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS][COLS];
// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {
for(int capacity = 1; capacity <= maxCapacity; capacity++) {

Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1][capacity];
if(currentItem.weight <= capacity) {

int withItem = currentItem.value;
int capLeft = capacity - currentItem.weight;
withItem += partialSolutions[item - 1][capLeft];
if (withItem > bestSoFar) {

bestSoFar = withItem;
}

}
partialSolutions[item][capacity] = bestSoFar;

}
}
return partialSolutions[ROWS - 1][COLS - 1];

}

Dynamic vs. Recursive
Backtracking Timing Data

CS314 Dynamic Programming 37

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93
Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4
Which approach to the knapsack problem
uses more memory?

A. the recursive backtracking approach

B. the dynamic programming approach

C. they use about the same amount of memory

CS314 Dynamic Programming 38

Topic 25
Tries

(Edward) Fredkin recommended
that BBN (Bolt, Beranek and Newman, now
BBN Technologies) purchase the very first
PDP-1 to support research projects at
BBN. The PDP-1 came with no software
whatsoever.

Fredkin wrote a PDP-1 assembler called FRAP (Free

Tries were first described by René de la Briandais in
File searching using variable length keys.

Clicker 1

A.

B. ee

C.

D.

E. something else

CS314 Tries 2

Tries aka Prefix Trees
Pronunciation:

From retrieval

Name coined by Computer Scientist
Edward Fredkin

Retrie

CS314 Tries 3 CS314 Tries 4

Predictive Text and AutoComplete

Search engines and texting applications
guess what you want after typing only a few
characters

AutoComplete
So do other programs such as IDEs

CS314 Tries 5

Searching a Dictionary
How?

Could search a set for all values that start
with the given prefix.

Naively O(N) (search the whole data
structure).

Could improve if possible to do a binary
search for prefix and then localize search to
that location.

CS314 Tries 6

Tries
A general tree (more than 2 children possible)

Root node (or possibly a list of root nodes)

Nodes can have many children
not a binary tree

In simplest form each node stores a character
and a data structure (list?) to refer to its
children

"Stores" all the words or phrases
in a dictionary.

How?
CS314 Tries 7

René de la Briandais Original Paper

CS314 Tries 8

????

CS314 Tries 9

????

CS314 Tries 10

Picture of a Dinosaur

Fall 2022 - Ryan P.

CS314 Tries 11

Created with Procreate: https://procreate.art/

Can

CS314 Tries 12

Candy

CS314 Tries 13

Fox

CS314 Tries 14

Clicker 2

Trie?

A. No

B. Yes

C. It depends

CS314 Tries 15

Clicker 3

Trie?

A. No

B. Yes

C. It depends

CS314 Tries 16

Tries

CS314 Tries 17

Another example
of a Trie

Each node stores:
A char

A boolean
indicating if the
string ending at
that node is a word

A list of children

Predictive Text and AutoComplete

CS314 Tries 18

As characters are entered
we descend the Trie

we can descend to
terminators and leaves to
see all possible words
based on current prefix

b, e, e -> bee, been, bees

Stores words and
phrases.

other values
possible, but typically
Strings

The whole word or
phrase is not actually
stored in a
single node.

the tree represents
the word.

Tries Implementing a Trie
public class Trie {

private TNode root;

private int size; // number of words

private int numNodes;

public Trie() {

root = new TNode();

numNodes = 1;

CS314 Tries 20

TNode Class

Basic implementation uses a LinkedList of
TNode objects for children

Other options?
ArrayList?

Something more exotic?

CS314 Tries 21

private static class TNode {

private boolean word;

private char ch;

private LinkedList<TNode> children;

Basic Operations
Adding a word to the Trie

Getting all words with given prefix

Demo in IDE

CS314 Tries 22

Compressed Tries
Some words, especially long ones, lead to a
chain of nodes with single child, followed by
single child:

b s

e i u

a

r

l

l

d o

y

y

e

l

l

t

o

c

k

p

Compressed Trie
Reduce number of nodes, by having nodes
store Strings

A chain of single child followed by single

compressed to a single node with that String

Does not have to be a chain that terminates
in a leaf node

Can be an internal chain of nodes

CS314 Tries 24

Original, Uncompressed

CS314 Tries 25

b s

e i u

a

r

l

l

d s

y

y

e

l

l

t

o

c

k

p

Compressed Version

CS314 Tries 26

b s

e id u

ar ll sy y

ell to

ck p

8 fewer nodes compared to uncompressed version

s t o c - k

Data Structures
Data structures we have studied

arrays, array based lists, linked lists, maps, sets,
stacks, queues, trees, binary search trees,
graphs, hash tables, red-black trees, priority
queues, heaps, tries

Most program languages have some built in
data structures, native or library

Must be familiar with performance of data
structures

best learned by implementing them yourself

CS314 Heaps 27

Data Structures
We have not covered every data structure

Heaps

http://en.wikipedia.org/wiki/List_of_data_structures

Data Structures
deque, b-trees, quad-trees, binary space
partition trees, skip list, sparse list, sparse
matrix, union-find data structure, Bloom
filters, AVL trees, 2-3-4 trees, and more!

Must be able to learn new and apply new
data structures

CS314 Heaps 29

Topic 27
Functional Programming

Functional Programming with Java 8

It's a long-standing principle of programming style that
the functional elements of a program should not be too
large. If some component of a program grows beyond the stage
where it's readily comprehensible, it becomes a mass of
complexity which conceals errors as easily as a big city conceals
fugitives. Such software will be hard to read, hard to test,
and hard to debug Paul Graham

Copyright (c) Pearson 2016.
All rights reserved.

2

What is FP?

functional programming: A style of programming that
emphasizes the use of functions (methods) to decompose a
complex task into subtasks.

Examples of functional languages:
LISP, Scheme, ML, Haskell, Erlang, F#, Clojure, ...

Java is considered an object-oriented language, not a functional
language.

But Java 8 added several language features to facilitate a partial
functional programming style.

Popular contemporary languages tend to be

3

Java 8 FP features

1. Effect-free programming

2. First-class functions

3. Processing structured data via functions

4. Function closures

5. Higher-order operations on collections

4

Effect-free code (19.1)

side effect: A change to the state of an object or program
variable produced by a call on a function (i.e., a method).

example: modifying the value of a variable
example: printing output to System.out
example: reading/writing data to a file, collection, or network

int result = f(x) + f(x);

int result = 2 * f(x);

Are the two above statements equivalent?

Yes, if the function f() has no

One goal of functional programming is to minimize side effects.

5

Code w/ side effects
public class SideEffect {

public static int x;

public static int f(int n) {
x = x * 2;
return x + n;

}

// what if it were 2 * f(x)?
public static void main(String[] args) {

x = 5;
int result = f(x) + f(x);
System.out.println(result);

}
} 6

First-class functions (19.2)

first-class citizen: An element of a programming language
that is tightly integrated with the language and supports the
full range of operations generally available to other entities in
the language.

In functional programming, functions (methods) are treated as
first-class citizens of the languages.

can store a function in a variable
can pass a function as a parameter to another function
can return a function as a value from another function
can create a collection of functions
...

7

Lambda expressions

lambda expression ("lambda"): Expression that describes a
function by specifying its parameters and return value.

Java 8 adds support for lambda expressions.
Essentially an anonymous function (aka method)

Syntax:
() ->

Example:
(x) -> x * x // squares a number

The above is roughly equivalent to:
public static int squared(int x) {

return x * x;

}
8

MathMatrix add / subtract

Recall the MathMatrix class:
public MathMatrix add(MathMatrix rhs) {
int[][] res = new int[cells.length][cells[0].length];
for (int r = 0; r < res.length; r++)

for (int c = 0; c < res[0].length; c++)
res[r][c] = cells[r][c] + rhs.cells[r][c];

return new MathMatrix(res);
}

public MathMatrix subtract(MathMatrix rhs) {
int[][] res = new int[cells.length][cells[0].length];
for (int r = 0; r < res.length; r++)

for (int c = 0; c < res[0].length; c++)
res[r][c] = cells[r][c] - rhs.cells[r][c];

return new MathMatrix(res);
}

9

MathMatrix add / subtract

GACK!!!
How do we generalize the idea of "add or
subtract"?

How much work would it be to add
other operators?
Can functional programming help remove the
repetitive code?

10

Code w/ lambdas

We can represent the math operation as a lambda:

public MathMatrix add(MathMatrix rhs) {
return getMat(rhs, (x, y) -> x + y);

}

public MathMatrix subtract(MathMatrix rhs) {
return getMat(rhs, (x, y) -> x - y);

}

11

getMat method
private MathMatrix getMat(MathMatrix rhs,

IntBinaryOperator operator) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < cells.length; r++) {
for (int c = 0; c < cells[0].length; c++) {
int temp1 = cells[r][c];
int temp2 = rhs.cells[r][c];
res[r][c] = operator.applyAsInt(temp1, temp2);

}
}
return new MathMatrix(res);

}

// IntBinaryOperator Documentation

12

Clicker 1

Which of the following is a lambda
that checks if x divides evenly into y?
A. (x, y) -> y / x == 0

B. (x, y) -> x / y == 0

C. (x, y) -> y % x == 0

D. (x, y) -> x % y == 0

E. (x, y) -> y * x == 0

13

Streams (19.3)

stream: A sequence of elements from a data source that
supports aggregate operations.

Streams operate on a data source and modify it:

example: print each element of a collection
example: sum each integer in a file
example: concatenate strings together into one large string
example: find the largest value in a collection
...

14

Code w/o streams

Non-functional programming sum code:

// compute the sum of the squares of integers 1-5
int sum = 0;
for (int i = 1; i <= 5; i++) {

sum += i * i;
}

15

The map modifier
The map modifier applies a lambda to each stream element:

higher-order function: Takes a function as an argument.

Abstracting away loops (and data structures)

// compute the sum of the squares of integers 1-5
int sum = IntStream.range(1, 6)

.map(n -> n * n)

.sum();

// the stream operations are as follows:

IntStream.range(1, 6) -> [1, 2, 3, 4, 5]
-> map -> [1, 4, 9, 16, 25]
-> sum -> 55

16

The filter modifier
The filter stream modifier removes/keeps elements of the
stream using a boolean lambda:

// compute the sum of squares of odd integers
int sum =

IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)
.filter(n -> n % 2 != 0)
.map(n -> n * n)
.sum();

// the stream operations are as follows:
IntStream.of -> [3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

-> filter -> [3, 1, 1, 5, 9, 5, 3]
-> map -> [9, 1, 1, 25, 81, 25, 9]
-> sum -> 151

17

Streams and methods

using streams as part of a regular method:

// Returns true if the given integer is prime.
// Assumes n >= 2.
public static boolean isPrime(int n) {

return IntStream.range(1, n + 1)
.filter(x -> n % x == 0)
.count() == 2;

}

How to make this method faster?

18

The reduce modifier
The reduce modifier (method) combines elements of a stream
using a lambda combination function.

Accepts two parameters: an initial value and a lambda to combine
that initial value with each subsequent value in the stream.

// Returns n!, or 1 * 2 * 3 * ... * (n-1) * n.
// Assumes n is non-negative.
public static int factorial(int n) {

return IntStream.range(2, n + 1)
.reduce(1, (a, b) -> a * b);

}

19

Stream operators
Method name Description
anyMatch(f) returns true if any elements of stream match given predicate
allMatch(f) returns true if all elements of stream match given predicate

average() returns arithmetic mean of numbers in stream

collect(f) convert stream into a collection and return it
count() returns number of elements in stream

distinct() returns unique elements from stream
filter(f) returns the elements that match the given predicate
forEach(f) performs an action on each element of stream
limit(size) returns only the next size elements of stream
map(f) applies the given function to every element of stream
noneMatch(f) returns true if zero elements of stream match given predicate

20

Stream operators
Method name Description
parallel() returns a multithreaded version of this stream
peek(f) examines the first element of stream only
reduce(f) applies the given binary reduction function to stream elements
sequential() single-threaded, opposite of parallel()
skip(n) omits the next n elements from the stream
sorted() returns stream's elements in sorted order
sum() returns sum of elements in stream
toArray() converts stream into array

Static method Description
concat(s1, s2) glues two streams together
empty() returns a zero-element stream
iterate(seed, f) returns an infinite stream with given start element
of(values) converts the given values into a stream
range(start, end) returns a range of integer values as a stream

21

Clicker 2

What is output by the following code?

A.(-2, 5, 5, 10, -6)

B.6

C.(-1, 2.5, 2.5, 5, -3)

D.9

E.20

int x1 = IntStream.of(-2, 5, 5, 10, -6)
.map(x -> x / 2)
.filter(y -> y > 0)
.sum();

System.out.print(x1);

22

Optional results

Some stream terminators like max return an "optional" result
because the stream might be empty or not contain the result:

// print largest multiple of 10 in list
// (does not compile!)
int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)
.filter(n -> n % 10 == 0)
.max();

System.out.println(largest);

23

Optional results fix

To extract the optional result, use a "get as" terminator.
Converts type OptionalInt to Integer

// print largest multiple of 10 in list
// (this version compiles and works.)
int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)
.filter(n -> n % 10 == 0)
.max()
.getAsInt();

System.out.println(largest);

24

Ramya, Spring 2018

Programming with Streams is an
alternative to writing out the
loops ourselves

structures we have spent so much
time writing

25

Stream exercises
Write a method sumAbsVals that uses stream operations to
compute the sum of the absolute values of an array of
integers. For example, the sum of {-1, 2, -4, 6, -9} is
22.

Write a method largestEven that uses stream operations to
find and return the largest even number from an array of
integers. For example, if the array is {5, -1, 12, 10, 2,
8}, your method should return 12. You may assume that the
array contains at least one even integer.

26

Closures (19.4)

bound/free variable: In a lambda expression, parameters
are bound variables while variables in the outer containing
scope are free variables.
function closure: A block of code defining a function along
with the definitions of any free variables that are defined in the
containing scope.

// free variables: min, max, multiplier

// bound variables: x, y

int min = 10;
int max = 50;
int multiplier = 3;
compute((x, y) -> Math.max(x, min) *

Math.max(y, max) * multiplier);

27

An array can be converted into a stream with Arrays.stream:

// compute sum of absolute values of even ints
int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};
int sum = Arrays.stream(numbers)

.map(n -> Math.abs(n))

.filter(n -> n % 2 == 0)

.distinct()

.sum();

(19.4) Higher Order
Operations on Collections

(Streams and Arrays)

28

Method references
ClassName::methodName

A method reference lets you pass a method where a lambda
would otherwise be expected:

// compute sum of absolute values of even ints
int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};
int sum = Arrays.stream(numbers)

.map(Math::abs)

.filter(n -> n % 2 == 0)

.distinct()

.sum();

29

Streams and lists

A collection can be converted into a stream by calling its
stream method:

// compute sum of absolute values of even ints
ArrayList<Integer> list =

new ArrayList<Integer>();
list.add(-42);
list.add(-17);
list.add(68);
list.stream()

.map(Math::abs)

.forEach(System.out::println);

30

Streams and strings

// convert into set of lowercase words
List<String> words = Arrays.asList(

"To", "be", "or", "Not", "to", "be");
Set<String> words2 = words.stream()

.map(String::toLowerCase)

.collect(Collectors.toSet());

System.out.println("word set = " + words2);

output:
word set = [not, be, or, to]

31

Streams and files

// find longest line in the file
int longest = Files.lines(Paths.get("haiku.txt"))

.mapToInt(String::length)

.max()

.getAsInt();

stream operations:
Files.lines -> ["haiku are funny",

"but sometimes they don't make sense",

"refrigerator"]

-> mapToInt -> [15, 35, 12]

-> max -> 35

32

Stream exercises

Write a method fiveLetterWords that accepts a file name as
a parameter and returns a count of the number of unique lines
in the file that are exactly five letters long. Assume that each
line in the file contains at least one word.

Write a method using streams that finds and prints the first 5
perfect numbers. (Recall a perfect number is equal to the sum
of its unique integer divisors, excluding itself.)

