"A tree may grow a thousand feet tall, but its leaves will return to its roots."

-Chinese Proverb

Definitions

- A *tree* is an abstract data type with one entry point, the **root**
- Each node is either a **leaf** or an **internal node**
- An internal node has 1 or more **children**, nodes that can be reached directly from that internal node.
- The internal node is said to be the **parent** of its child nodes

Properties of Trees

- Only access point is the root
- All nodes, except the root, have one parent
 - like the inheritance hierarchy in Java
- Traditionally trees drawn upside down

Properties of Trees and Nodes

- **siblings**: two nodes that have the same parent
- **edge**: the link from one node to another
- **path length**: the number of edges that must be traversed to get from one node to another

- path length from root to this node is 3
More Properties of Trees

- **depth**: the path length from the root of the tree to this node
- **height of a node**: The maximum distance (path length) of any leaf from this node
 - a leaf has a height of 0
 - the height of a tree is the height of the root of that tree
- **descendants**: any nodes that can be reached via 1 or more edges from this node
- **ancestors**: any nodes for which this node is a descendant

Clicker Question 1

- What is the depth of the node that contains M on the previous slide?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

Binary Trees

- There are many variations on trees but we will start with **binary trees**
- **binary tree**: each node has at most two children
 - the possible children are usually referred to as the **left child** and the **right child**
Full Binary Tree

- *full binary tree*: a binary tree in which each node was exactly 2 or 0 children

Clicker Question 2

- What is the maximum height of a full binary tree with 11 nodes?
 - A. 1
 - B. 3
 - C. 5
 - D. 7
 - E. Not possible to construct a full binary tree with 11 nodes.

Complete Binary Tree

- *complete binary tree*: a binary tree in which every level, except possibly the deepest is completely filled. At depth n, the height of the tree, all nodes are as far left as possible

Clicker Question 3

- What is the height of a complete binary tree that contains N nodes?
 - A. 1
 - B. \(\log N \)
 - C. \(N^{1/2} \)
 - D. N
 - E. N\(\log N \)
Perfect Binary Tree

- **perfect binary tree**: a binary tree with all leaf nodes at the same depth. All internal nodes have exactly two children.
- A perfect binary tree has the maximum number of nodes for a given height.
- A perfect binary tree has \(2^{(n+1)} - 1\) nodes where \(n\) is the height of the tree
 - Height = 0 \(\rightarrow\) 1 node
 - Height = 1 \(\rightarrow\) 3 nodes
 - Height = 2 \(\rightarrow\) 7 nodes
 - Height = 3 \(\rightarrow\) 15 nodes

A Binary Node class

```java
public class Bnode <E> {
    private E myData;
    private Bnode<E> myLeft;
    private Bnode<E> myRight;

    public BNode();
    public BNode(E data, Bnode<E> left, Bnode<E> right)
    public E getData()
    public Bnode<E> getLeft()
    public Bnode<E> getRight()

    public void setData(E data)
    public void setLeft(Bnode<E> left)
    public void setRight(Bnode<E> right)
}
```

Binary Tree Traversals

- Many algorithms require all nodes of a binary tree be visited and the contents of each node processed or examined.
- There are 4 traditional types of traversals
 - Preorder traversal: process the root, then process all sub trees (left to right)
 - In order traversal: process the left sub tree, process the root, process the right sub tree
 - Post order traversal: process the left sub tree, process the right sub tree, then process the root
 - Level order traversal: starting from the root of a tree, process all nodes at the same depth from left to right, then proceed to the nodes at the next depth.

Results of Traversals

- To determine the results of a traversal on a given tree draw a path around the tree.
 - Start on the left side of the root and trace around the tree. The path should stay close to the tree.

```
        12
     /   \
   49     42
    /     /
  13     5
```

- Pre order: process when pass down left side of node 12 49 13 5 42
- In order: process when pass underneath node 13 49 5 12 42
- Post order: process when pass up right side of node 13 5 49 42 12
Tree Traversals

Attendance Question 2

- What is the result of a post order traversal of the tree on the previous slide?
 A. F C G A K H L D J
 B. F G C K L H J D A
 C. A C F G D H K L J
 D. A C D F G H J K L
 E. L K J H G F D C A

Implement Traversals

- Implement preorder, inorder, and post order traversal
 - Big O time and space?
- Implement a level order traversal using a queue
 - Big O time and space?
- Implement a level order traversal without a queue
 - target depth

Breadth First - Depth First

- from NIST - DADS
- breadth first search: Any search algorithm that considers neighbors of a vertex (node), that is, outgoing edges (links) of the vertex's predecessor in the search, before any outgoing edges of the vertex
- depth first search: Any search algorithm that considers outgoing edges (links of children) of a vertex (node) before any of the vertex's (node) siblings, that is, outgoing edges of the vertex's predecessor in the search. Extremes are searched first.
Breadth First

- A level order traversal of a tree could be used as a breadth first search
- Search all nodes in a level before going down to the next level

Breadth First Search of Tree

Find Node with B

search level 0 first

search level 1 next
Breadth First Search

Find Node with B search level 2 next

Depth First Search

Find Node with B

BFS - DFS

- Breadth first search typically implemented with a Queue
- Depth first search typically implemented with recursion
- which technique do I use? – depends on the problem