"Yes. Shrubberies are my trade. I am a shrubber. My name is 'Roger the Shrubber'. I arrange, design, and sell shrubberies."

-Monty Python and The Holy Grail
The Problem with Linked Lists

- Accessing an item from a linked list takes O(N) time for an arbitrary element.
- Binary trees can improve upon this and reduce access to O(log N) time for the average case.
- Expands on the binary search technique and allows insertions and deletions.
- Worst case degenerates to O(N) but this can be avoided by using balanced trees (AVL, Red-Black).
A binary search tree is a binary tree in which every node's left subtree holds values less than the node's value, and every right subtree holds values greater than the node's value.

A new node is added as a leaf.
BST Insertion

- Add the following values one at a time to an initially empty binary search tree using the naïve algorithm:

 90 20 9 98 10 28 -25

- What is the resulting tree?
Traversals

- What is the result of an inorder traversal of the resulting tree?
- How could a preorder traversal be useful?
Clicker Question 1

- After adding N distinct elements in random order to a Binary Search Tree what is the expected height of the tree?

A. $O(N^{1/2})$
B. $O(\log N)$
C. $O(N)$
D. $O(N\log N)$
E. $O(N^2)$
Clicker Question 1

After adding N distinct elements to a Binary Search Tree what is the worst case height of the tree?

A. $O(N^{1/2})$
B. $O(\log N)$
C. $O(N)$
D. $O(N \log N)$
E. $O(N^2)$
Node for Binary Search Trees

public class BSTNode<E extends Comparable<E> {
 private Comparable<E> myData;
 private BSTNode<E> myLeft;
 private BSTNode<E> myRight;

 public BSTNode(E item)
 {
 myData = item;
 }

 public E getValue()
 {
 return myData;
 }

 public BSTNode<E> getLeft()
 {
 return myLeft;
 }

 public BSTNode<E> getRight()
 {
 return myRight;
 }

 public void setLeft(BSTNode<E> b)
 {
 myLeft = b;
 }
 // setRight not shown
Worst Case Performance

- Insert the following values into an initially empty binary search tree using the traditional, naïve algorithm:

 2 3 5 7 11 13 17

- What is the height of the tree?
- What is the worst case height of a BST?
More on Implementation

- Many ways to implement BSTs
- Using nodes is just one and even then many options and choices

```java
public class BinarySearchTree<E extends Comparable<E>> {
    private BSTNode<E> root;
    private int size;
}
```
Add an Element, Recursive
Add an Element, Iterative
Clicker Question 2

What are the best case and worst case order to add N distinct elements, one at a time, to an initially empty binary search tree using the simple add algorithm?

<table>
<thead>
<tr>
<th>Best</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>O(N)</td>
</tr>
<tr>
<td>O(N\log N)</td>
<td>O(N\log N)</td>
</tr>
<tr>
<td>O(N)</td>
<td>O(N\log N)</td>
</tr>
<tr>
<td>O(N\log N)</td>
<td>O(N^2)</td>
</tr>
<tr>
<td>O(N^2)</td>
<td>O(N^2)</td>
</tr>
</tbody>
</table>

```java
// given int[] data
// no duplicates in data
BST<Integer> b = new BST<Integer>();
for(int x : data)
    b.add(x);
```
Performance of Binary Trees

- For the three core operations (add, access, remove) a binary search tree (BST) has an average case performance of $O(\log N)$

- Even when using the *naïve insertion / removal algorithms*

 - no checks to maintain balance

 - balance achieved based on the randomness of the data inserted
Remove an Element

- Three cases
 - node is a leaf, 0 children (easy)
 - node has 1 child (easy)
 - node has 2 children (interesting)
Properties of a BST

- The minimum value is in the left most node
- The maximum value is in the right most node
 – useful when removing an element from the BST
Alternate Implementation

- In class examples of dynamic data structures have relied on *null terminated ends*.
 - Use null to show end of list, no children

- Alternative form
 - use structural recursion and polymorphism
public interface BST {
 public int size();
 public boolean contains(Comparable obj);
 public boolean add(Comparable obj);
}
public class EmptyBST implements BST {

 private static EmptyBST theOne = new EmptyBST();

 private EmptyBST(){}

 public static EmptyBST getEmptyBST(){ return theOne; }

 public BST add(Comparable obj) { return new NEBST(obj); }

 public boolean contains(Comparable obj) { return false; }

 public int size() { return 0; }
}
public class NEBST implements BST {

 private Comparable data;
 private BST left;
 private BST right;

 public NEBST(Comparable d){
 data = d;
 right = EmptyBST.getEmptyBST();
 left = EmptyBST.getEmptyBST();
 }

 public BST add(Comparable obj) {
 int val = obj.compareTo(data);
 if(val < 0)
 left = left.add(obj);
 else if(val > 0)
 right = right.add(obj);
 return this;
 }
}
public boolean contains(Comparable obj){
 int val = obj.compareTo(data);
 if(val == 0)
 return true;
 else if (val < 0)
 return left.contains(obj);
 else
 return right.contains(obj);
}

public int size() {
 return 1 + left.size() + right.size();
}