Topic 25
Dynamic Programming

"Thus, I thought *dynamic programming* was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"
- Richard E. Bellman

 Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term *Dynamic Programming* coined by mathematician Richard Bellman in early 1950s
 - employed by Rand corporation
 - Rand had many, large military contracts
 - Secretary of Defense against research, especially mathematical research
 - how could any one oppose "dynamic"?

Dynamic Programming

- Break big problem up into smaller problems ...
- Sound familiar?
- Recursion?
 N! = 1 for N == 0
 N! = N * (N - 1)! for N > 0

Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- \(F_1 = 1 \)
- \(F_2 = 1 \)
- \(F_N = F_{N-1} + F_{N-2} \)
- Recursive Solution?
Failing Spectacularly

* Naïve recursive method

```java
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if(n <= 2)
        return 1;
    else
        return fib(n - 1) + fib(n - 2);
}
```

* Order of this method?
A. O(1) B. O(log N) C. O(N) D. O(N^2) E. O(2^N)

Failing Spectacularly

| 1th fibonacci number: 1 - Time: 4.467E-6 |
| 2th fibonacci number: 1 - Time: 4.47E-7 |
| 3th fibonacci number: 2 - Time: 4.46E-7 |
| 4th fibonacci number: 3 - Time: 4.46E-7 |
| 5th fibonacci number: 5 - Time: 4.47E-7 |
| 6th fibonacci number: 8 - Time: 4.47E-7 |
| 7th fibonacci number: 13 - Time: 1.34E-6 |
| 8th fibonacci number: 21 - Time: 1.787E-6 |
| 9th fibonacci number: 34 - Time: 2.233E-6 |
| 10th fibonacci number: 55 - Time: 3.573E-6 |
| 11th fibonacci number: 89 - Time: 1.2953E-5 |
| 12th fibonacci number: 144 - Time: 8.934E-6 |
| 13th fibonacci number: 233 - Time: 2.9033E-5 |
| 14th fibonacci number: 377 - Time: 3.7966E-5 |
| 15th fibonacci number: 610 - Time: 5.0919E-5 |
| 16th fibonacci number: 987 - Time: 7.1464E-5 |
| 17th fibonacci number: 1597 - Time: 1.08984E-4 |

Failing Spectacularly

| 36th fibonacci number: 14930352 - Time: 0.045372057 |
| 37th fibonacci number: 24157817 - Time: 0.071195386 |
| 38th fibonacci number: 39088169 - Time: 0.116922086 |
| 39th fibonacci number: 63245986 - Time: 0.186926245 |
| 40th fibonacci number: 102334155 - Time: 0.308602967 |
| 41st fibonacci number: 165580141 - Time: 0.498588795 |
| 42nd fibonacci number: 267914296 - Time: 0.793824734 |
| 43rd fibonacci number: 433494437 - Time: 1.323325593 |
| 44th fibonacci number: 701408733 - Time: 2.098209943 |
| 45th fibonacci number: 1134903170 - Time: 3.392917489 |
| 46th fibonacci number: 1836311903 - Time: 5.506675921 |
| 47th fibonacci number: -1323752223 - Time: 8.803592621 |
| 48th fibonacci number: 512559680 - Time: 14.295023778 |
| 49th fibonacci number: -811192543 - Time: 23.03062974 |
| 50th fibonacci number: -298632863 - Time: 37.217244704 |
| 51th fibonacci number: -1109825406 - Time: 60.224418869 |

How long to calculate the 70th Fibonacci Number with this method?

A. 37 seconds
B. 74 seconds
C. 740 seconds
D. 14,800 seconds
E. None of these
Aside - Overflow

- at 47th Fibonacci number overflows int
- Could use BigInteger class instead

```java
private static final BigInteger one
    = new BigInteger("1");

private static final BigInteger two
    = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if(n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```

Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower due to creation of so many objects

<table>
<thead>
<tr>
<th>Fibonacci Number</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37th</td>
<td>2.406739213</td>
</tr>
<tr>
<td>38th</td>
<td>3.680196724</td>
</tr>
<tr>
<td>39th</td>
<td>5.941275208</td>
</tr>
<tr>
<td>40th</td>
<td>9.63855468</td>
</tr>
<tr>
<td>41th</td>
<td>15.659745756</td>
</tr>
<tr>
<td>42th</td>
<td>25.404417949</td>
</tr>
<tr>
<td>43th</td>
<td>40.867030512</td>
</tr>
<tr>
<td>44th</td>
<td>66.391845965</td>
</tr>
<tr>
<td>45th</td>
<td>106.964369924</td>
</tr>
<tr>
<td>46th</td>
<td>178.981819822</td>
</tr>
<tr>
<td>47th</td>
<td>287.052365326</td>
</tr>
</tbody>
</table>

Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number 24,157,817 times!!!

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```java
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for(int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;
}
```
Fast Fibonacci

1th fibonacci number: 1 - Time: 4.467E-6
2th fibonacci number: 1 - Time: 4.47E-7
3th fibonacci number: 2 - Time: 7.146E-6
4th fibonacci number: 3 - Time: 2.68E-6
5th fibonacci number: 5 - Time: 2.68E-6
6th fibonacci number: 8 - Time: 2.679E-6
7th fibonacci number: 13 - Time: 3.573E-6
8th fibonacci number: 21 - Time: 4.02E-6
9th fibonacci number: 34 - Time: 4.466E-6
10th fibonacci number: 55 - Time: 4.467E-6
11th fibonacci number: 89 - Time: 4.913E-6
12th fibonacci number: 144 - Time: 6.253E-6
13th fibonacci number: 233 - Time: 6.253E-6
14th fibonacci number: 377 - Time: 5.806E-6
15th fibonacci number: 610 - Time: 6.7E-6
16th fibonacci number: 987 - Time: 7.146E-6
17th fibonacci number: 1597 - Time: 7.146E-6

Memoization

- Store (cache) results from functions for later lookup
- Memoization of Fibonacci Numbers

```
public class FibMemo {

  private static List<BigInteger> lookupTable
      = new ArrayList<BigInteger>();

  private static final BigInteger one
      = new BigInteger("1");

  static {
      // no fib for n == 0
      lookupTable.add(null);
      lookupTable.add(one);
      lookupTable.add(one);
      
      public static BigInteger fib(int n) {
        // check lookup table
        if (n < lookupTable.size())
            return lookupTable.get(n);

        // must calculate nth fibonacci
        // don't repeat work
        BigInteger smallTerm
            = lookupTable.get(lookupTable.size() - 2);
        BigInteger largeTerm
            = lookupTable.get(lookupTable.size() - 1);
        for (int i = lookupTable.size(); i <= n; i++) {
            BigInteger temp = largeTerm;
            largeTerm = largeTerm.add(smallTerm);
            lookupTable.add(largeTerm); // memo
            smallTerm = temp;
        }

        return largeTerm;
      }
  }
```
Dynamic Programming

- When to use?
- When a big problem can be broken up into sub problems.
- Solution to original problem can be calculated from results of smaller problems.
- Sub problems have a natural ordering from smallest to largest.
 - larger problems depend on previous solutions
- Multiple techniques within DP

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Dynamic Programming Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values \(V_1, V_2, \ldots, V_N \) and a target sum \(S \), find the fewest coins required to equal \(S \)
- Recall, Greedy algorithm does not always work:
 - \(\{1, 5, 12\} \) and target sum = 15
- Could use recursive backtracking …

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values \(\{1, 5, 12\} \) start with sum 0
 - recursive backtracking would likely start with 15
- Let \(M(S) = \) minimum number of coins to sum to \(S \)
- At each step look at target sum, coins available, and previous sums
 - pick the smallest option
Minimum Number of Coins

- M(0) = 0 coins
- M(1) = 1 coin (1 coin)
- M(2) = 2 coins (1 coin + M(1))
- M(3) = 3 coins (1 coin + M(2))
- M(4) = 4 coins (1 coin + M(3))
- M(5) = interesting, 2 options available:
 1 + others OR single 5
 if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1
 clearly better to pick the coin worth 5

Minimum Number of Coins

- M(0) = 0
- M(1) = 1 (1 coin)
- M(2) = 2 (1 coin + M(1))
- M(3) = 3 (1 coin + M(2))
- M(4) = 4 (1 coin + M(3))
- M(5) = 1 (1 coin + M(0))
- M(6) = 2 (1 coin + M(5))
- M(7) = 3 (1 coin + M(6))
- M(8) = 4 (1 coin + M(7))
- M(9) = 5 (1 coin + M(8))
- M(10) = 2 (1 coin + M(5))
 options: 1, 5

Knapsack Problem

- A *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the *value* of the items you put in the knapsack without exceeding the weight limit

KNAPSACK PROBLEM - RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING
Knapsack Example

- Items:
<p>|</p>
<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
<th>Value per unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>3.167</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>1.714</td>
</tr>
</tbody>
</table>

- Weight Limit = 8

- One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- Total value = 6 + 11 + 12 = 29
- Is this optimal? A. Yes B. No

Knapsack - Recursive Backtracking

```java
private static int knapsack(ArrayList<Item> items, int current, int capacity) {
    int result = 0;
    if(current < items.size()) {
        // don't use item
        int withoutItem = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if(currentItem.weight <= capacity) {
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1, capacity - currentItem.weight);
        }
        result = Math.max(withoutItem, withItem);
    }
    return result;
}
```

CS314 Dynamic Programming

Knapsack - Dynamic Programming

- Recursive backtracking starts with max capacity and makes choice for items:
 choices are:
 - take the item if it fits
 - don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

Knapsack - Optimal Function

- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- 2 options:
 - OptimalSolution does not select i\(^{th}\) item
 - select best solution for items 1 to i - 1 with weight limit of w
 - OptimalSolution selects i\(^{th}\) item
 - New weight limit = w - weight of i\(^{th}\) item
 - select best solution for items 1 to i - 1 with new weight limit
Knapsack Optimal Function

- OptimalSolution(items, weight limit) =
 0 if 0 items

- OptimalSolution(items - 1, weight) if weight of
 ith item is greater than allowed weight
 \(w_i > w \) (In others \(i^{th} \) item doesn't fit)

- max of (OptimalSolution(items - 1, w),
 value of \(i^{th} \) item +
 OptimalSolution(items - 1, \(w - w_i \))

Knapsack - Algorithm

- Create a 2d array to store value of best option given
 subset of items and possible weights

- In our example 0 to 6
 items and weight limits of of 0 to 8

- Fill in table using OptimalSolution Function

Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
 \(M[0, w] = 0 \)

For item = 1 to N
 for weight = 1 to WeightLimit
 if(weight of ith item > weight)
 \(M[item, weight] = M[item - 1, weight] \)
 else
 \(M[item, weight] = \text{max of } \)
 \(M[item - 1, weight] \) AND
 \(\text{value of item} + M[item - 1, \text{weight} - \text{weight of item}] \)

Knapsack - Table

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5,6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Knapsack - Completed Table

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1} [1, 6]</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1, 2} [2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3} [4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1, 2, 3, 4} [4, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5} [6, 19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6} [7, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Knapsack - Items to Take

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1} [1, 6]</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1, 2} [2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3} [4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1, 2, 3, 4} [4, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5} [6, 19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6} [7, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Dynamic Knapsack

```java
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];

    for (int item = 1; item <= items.size(); item++) {
        for (int capacity = 0; capacity <= maxCapacity; capacity++) {
            Item currentItem = items.get(item - 1);
            if (currentItem.weight <= capacity) {
                int best = partialSolutions[item - 1][capacity];
                if (currentItem.weight <= capacity) {
                    withItem = currentItem.value;
                    int capLeft = capacity - currentItem.weight;
                    withItem += partialSolutions[item - 1][capLeft];
                    if (withItem > best) {
                        best = withItem;
                    }
                } else {
                    withoutItem = partialSolutions[item - 1][capacity];
                    if (withoutItem > best) {
                        best = withoutItem;
                    }
                }
            }
            partialSolutions[item][capacity] = best;
        }
    }
    return partialSolutions[ROWS - 1][COLS - 1];
}
```

Dynamic vs. Recursive Backtracking

<table>
<thead>
<tr>
<th>Number of items: 34. Capacity: 258</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive knapsack. Answer: 433, time: 111.776105952</td>
</tr>
<tr>
<td>Dynamic knapsack. Answer: 433, time: 2.6353E-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of items: 35. Capacity: 199</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive knapsack. Answer: 318, time: 154.049166387</td>
</tr>
<tr>
<td>Dynamic knapsack. Answer: 318, time: 2.3673E-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of items: 36. Capacity: 260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive knapsack. Answer: 436, time: 451.122478468</td>
</tr>
<tr>
<td>Dynamic knapsack. Answer: 436, time: 3.0373E-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of items: 37. Capacity: 238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive knapsack. Answer: 411, time: 636.560835011</td>
</tr>
<tr>
<td>Dynamic knapsack. Answer: 411, time: 3.5285E-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of items: 38. Capacity: 308</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive knapsack. Answer: 411, time: 636.560835011</td>
</tr>
<tr>
<td>Dynamic knapsack. Answer: 411, time: 3.5285E-5</td>
</tr>
</tbody>
</table>