Topic 25
Dynamic Programming

"Thus, I thought *dynamic programming* was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"
- Richard E. Bellman

Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term *Dynamic Programming* coined by mathematician Richard Bellman in early 1950s
 - employed by Rand corporation
 - Rand had many, large military contracts
 - Charles E Wilson, Secretary of Defense against research, especially mathematical research
 - how could any one oppose "dynamic"?

Dynamic Programming

- Break big problem up into smaller problems ...
- Sound familiar?
- Recursion?
 - \(N! = 1 \) for \(N = 0 \)
 - \(N! = N \times (N - 1)! \) for \(N > 0 \)

Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- \(F_1 = 1 \)
- \(F_2 = 1 \)
- \(F_N = F_{N - 1} + F_{N - 2} \)
- Recursive Solution?
Failing Spectacularly

- Naïve recursive method

```java
// pre: n > 0
// post: return the nth Fibonnaci number
public int fib(int n) {
    if(n <= 2)
        return 1;
    else
        return fib(n - 1) + fib(n - 2);
}
```

- Order of this method?
A. O(1) B. O(log N) C. O(N) D. O(N^2) E. O(2^N)

CS314 Dynamic Programming 5

Failing Spectacularly

1th fibonnaci number:	Time: 4.461E-6
2th fibonnaci number:	Time: 4.47E-7
3th fibonnaci number:	Time: 4.46E-7
4th fibonnaci number:	Time: 4.46E-7
5th fibonnaci number:	Time: 4.47E-7
6th fibonnaci number:	Time: 4.47E-7
7th fibonnaci number:	Time: 1.34E-6
8th fibonnaci number:	Time: 1.787E-6
9th fibonnaci number:	Time: 2.23E-6
10th fibonnaci number:	Time: 3.573E-6
11th fibonnaci number:	Time: 1.2953E-5
12th fibonnaci number:	Time: 8.934E-6
13th fibonnaci number:	Time: 2.9033E-5
14th fibonnaci number:	Time: 3.7966E-5
15th fibonnaci number:	Time: 5.0919E-5
16th fibonnaci number:	Time: 7.1464E-5
17th fibonnaci number:	Time: 1.08984E-4

CS314 Dynamic Programming 8

Failing Spectacularly

36th fibonnaci number:	Time: 0.045372057
37th fibonnaci number:	Time: 0.07195386
38th fibonnaci number:	Time: 0.116922086
39th fibonnaci number:	Time: 0.186926245
40th fibonnaci number:	Time: 0.308602967
41th fibonnaci number:	Time: 0.49858795
42th fibonnaci number:	Time: 0.793824734
43th fibonnaci number:	Time: 1.323325593
44th fibonnaci number:	Time: 2.098209943
45th fibonnaci number:	Time: 3.392917489
46th fibonnaci number:	Time: 5.506675921
47th fibonnaci number:	Time: 8.803592621
48th fibonnaci number:	Time: 14.295023778
49th fibonnaci number:	Time: 23.030062974
50th fibonnaci number:	Time: 37.217244704
51th fibonnaci number:	Time: 60.22418869

50th fibonnaci number: -298632863 - Time: 37.215

- How long to calculate the 70th Fibonacci Number with this method?
A. 37 seconds B. 74 seconds C. 740 seconds D. 14,800 seconds E. None of these

CS314 Dynamic Programming 7

CS314 Dynamic Programming 8
Aside - Overflow

- at 47th Fibonacci number overflows int
- Could use BigInteger class instead

```java
private static final BigInteger one = new BigInteger("1");
private static final BigInteger two = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```

Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower due to creation of so many objects

37th fibonacci number: 24157817 - Time: 2.406739213
38th fibonacci number: 39088169 - Time: 3.680196724
39th fibonacci number: 63245986 - Time: 5.941275208
40th fibonacci number: 102334155 - Time: 9.63855468
41st fibonacci number: 165580141 - Time: 15.659745756
42nd fibonacci number: 267914296 - Time: 25.404417949
43rd fibonacci number: 433494437 - Time: 40.867030512
44th fibonacci number: 701408733 - Time: 66.391845965
45th fibonacci number: 1134903170 - Time: 106.964369924
46th fibonacci number: 1836311903 - Time: 178.901819822
47th fibonacci number: 2971215073 - Time: 287.052365326

Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number 24,157,817 times!!!

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```java
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for (int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;
}
```
Fast Fibonacci

1th fibonacci number: 1 - Time: 4.467E-6
2th fibonacci number: 1 - Time: 4.47E-7
3th fibonacci number: 2 - Time: 7.146E-6
4th fibonacci number: 3 - Time: 2.68E-6
5th fibonacci number: 5 - Time: 2.68E-6
6th fibonacci number: 8 - Time: 2.679E-6
7th fibonacci number: 13 - Time: 3.573E-6
8th fibonacci number: 21 - Time: 4.02E-6
9th fibonacci number: 34 - Time: 4.466E-6
10th fibonacci number: 55 - Time: 4.467E-6
11th fibonacci number: 89 - Time: 4.913E-6
12th fibonacci number: 144 - Time: 6.253E-6
13th fibonacci number: 233 - Time: 6.253E-6
14th fibonacci number: 377 - Time: 5.806E-6
15th fibonacci number: 610 - Time: 6.7E-6
16th fibonacci number: 987 - Time: 7.146E-6
17th fibonacci number: 1597 - Time: 7.146E-6

Fast Fibonacci

45th fibonacci number: 1134903170 - Time: 1.7419E-5
46th fibonacci number: 1836311903 - Time: 1.6972E-5
47th fibonacci number: 2971215073 - Time: 1.6973E-5
48th fibonacci number: 4807526976 - Time: 2.3673E-5
49th fibonacci number: 7778742049 - Time: 1.9653E-5
50th fibonacci number: 12586269025 - Time: 2.01E-5
51th fibonacci number: 20365011074 - Time: 1.9207E-5
52th fibonacci number: 32951280099 - Time: 2.0546E-5

67th fibonacci number: 44945570212853 - Time: 2.3673E-5
68th fibonacci number: 72723460248141 - Time: 2.3673E-5
69th fibonacci number: 117669030460994 - Time: 2.412E-5
70th fibonacci number: 190392490709135 - Time: 2.4566E-5
71th fibonacci number: 308061521170129 - Time: 2.4566E-5
72th fibonacci number: 498454011879264 - Time: 2.5906E-5
73th fibonacci number: 80651553049393 - Time: 2.5459E-5
74th fibonacci number: 1304969544928657 - Time: 2.546E-5

Memoization

- Store (cache) results from functions for later lookup
- Memoization of Fibonacci Numbers

```java
public class FibMemo {
    private static List<BigInteger> lookupTable = new ArrayList<>();
    private static final BigInteger one = new BigInteger("1");

    static {
        // no fib for n == 0
        lookupTable.add(null);
        lookupTable.add(one);
        lookupTable.add(one);
    }

    public static BigInteger fib(int n) {
        // check lookup table
        if(n < lookupTable.size())
            return lookupTable.get(n);

        // must calculate nth fibonacci
        // don't repeat work
        BigInteger smallTerm = lookupTable.get(lookupTable.size() - 2);
        BigInteger largeTerm = lookupTable.get(lookupTable.size() - 1);
        for(int i = lookupTable.size(); i <= n; i++) {
            BigInteger temp = largeTerm;
            largeTerm = largeTerm.add(smallTerm);
            lookupTable.add(largeTerm); // memo
            smallTerm = temp;
        }

        return largeTerm;
    }
}
```
Dynamic Programming

- When to use?
- When a big problem can be broken up into subproblems.
- Solution to original problem can be calculated from results of smaller problems.
- Subproblems have a natural ordering from smallest to largest.
 - Larger problems depend on previous solutions
- Multiple techniques within DP

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, in Math as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Dynamic Programming Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values \(V_1, V_2, \ldots, V_N\) and a target sum \(S\), find the fewest coins required to equal \(S\)
- Recall, Greedy algorithm does not always work:
 - \(\{1, 5, 12\}\) and target sum = 15
 - Could use recursive backtracking ...

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values \(\{1, 5, 12\}\) start with sum 0
 - Recursive backtracking would likely start with 15
- Let \(M(S) = \text{minimum number of coins to sum to } S\)
- At each step look at target sum, coins available, and previous sums
 - Pick the smallest option
Minimum Number of Coins

- M(0) = 0 coins
- M(1) = 1 coin (1 coin)
- M(2) = 2 coins (1 coin + M(1))
- M(3) = 3 coins (1 coin + M(2))
- M(4) = 4 coins (1 coin + M(3))
- M(5) = interesting, 2 options available:
 1 + others OR single 5
 if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1
 clearly better to pick the coin worth 5

Minimum Number of Coins

- M(0) = 0
- M(1) = 1 (1 coin)
- M(2) = 2 (1 coin + M(1))
- M(3) = 3 (1 coin + M(2))
- M(4) = 4 (1 coin + M(3))
- M(5) = 1 (1 coin + M(0))
- M(6) = 2 (1 coin + M(5))
- M(7) = 3 (1 coin + M(6))
- M(8) = 4 (1 coin + M(7))
- M(9) = 5 (1 coin + M(8))
- M(10) = 2 (1 coin + M(5))
 options: 1, 5
- M(11) = 2 (1 coin + M(10))
 options: 1, 5
- M(12) = 1 (1 coin + M(0))
 options: 1, 5, 12
- M(13) = 2 (1 coin + M(12))
 options: 1, 12
- M(14) = 3 (1 coin + M(13))
 options: 1, 12
- M(15) = 3 (1 coin + M(10))
 options: 1, 5, 12

Knapsack Problem

- A *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the *value* of the items you put in the knapsack without exceeding the weight limit

KNAPSACK PROBLEM - RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING
Knapsack Example

- Items:

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value per unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.167</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.714</td>
</tr>
</tbody>
</table>

- Weight Limit = 8

- One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- Total value = 6 + 11 + 12 = 29
- Is this optimal? A. Yes B. No

Knapsack - Recursive Backtracking

```java
data class Item {
    int weight;
    int value;
}

class Knapsack {
    private static int knapsack(ArrayList<Item> items, int current, int capacity) {
        int result = 0;
        if(current < items.size()) {
            // don't use item
            int withoutItem = knapsack(items, current + 1, capacity);
            int withItem = 0;
            // if current item will fit, try it
            Item currentItem = items.get(current);
            if(currentItem.weight <= capacity) {
                withItem += currentItem.value;
                withItem += knapsack(items, current + 1, capacity - currentItem.weight);
            }
            result = Math.max(withoutItem, withItem);
        }
        return result;
    }
}
```

Knapsack - Dynamic Programming

- Recursive backtracking starts with max capacity and makes choice for items: choices are:
 - take the item if it fits
 - don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

Knapsack - Optimal Function

- `OptimalSolution(items, weight)` is best solution given a subset of items and a weight limit
- 2 options:
 - `OptimalSolution` does not select `i`th item
 - select best solution for items 1 to `i` - 1 with weight limit of `w`
 - `OptimalSolution` selects `i`th item
 - New weight limit = `w` - weight of `i`th item
 - select best solution for items 1 to `i` - 1 with new weight limit
Knapsack Optimal Function

- \text{OptimalSolution(items, weight limit)} =

 0 \text{ if 0 items}

- \text{OptimalSolution(items - 1, weight)} \text{ if weight of } \text{ith item} \text{ is greater than allowed weight } w_i > w \text{ (In others } \text{i}^{th} \text{ item doesn't fit)}

- \max \text{ of } (\text{OptimalSolution(items - 1, w)}, \text{ value of } \text{i}^{th} \text{ item + } \text{OptimalSolution(items - 1, w - w_i)})

Knapsack - Algorithm

- Create a 2d array to store value of best option given subset of items and possible weights

- In our example 0 to 6 items and weight limits of 0 to 8

- Fill in table using OptimalSolution Function

Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit

 \text{M}[0, w] = 0

For item = 1 to N

 for weight = 1 to WeightLimit

 if(weight of ith item > weight)
 \text{M}[\text{item, weight}] = \text{M}[\text{item - 1, weight}]

 else
 \text{M}[\text{item, weight}] = \max \text{ of } \text{M}[\text{item - 1, weight}] \text{ AND value of item + } \text{M}[\text{item - 1, weight - weight of item}]

Knapsack - Table

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5,6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Knapsack - Completed Table

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[1, 6]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>[2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>[4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>[4, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>[6, 19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>[7, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Knapsack - Items to Take

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[1, 6]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>[2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>[4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>[4, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>[6, 19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6}</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>[7, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Dynamic Knapsack

```java
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];
    for(int item = 1; item <= items.size(); item++) {
        for(int capacity = 0; capacity <= maxCapacity; capacity++) {
            Item currentItem = items.get(item - 1);
            int best = partialSolutions[item - 1][capacity];
            if(currentItem.weight <= capacity) {
                int withItem = currentItem.value +
                withItem + partialSolutions[item - 1][capLeft];
                if(withItem > best) best = withItem;
            }
        }
        partialSolutions[item][capacity] = best;
    }
    return partialSolutions[ROWS - 1][COLS - 1];
}
```

Dynamic vs. Recursive Backtracking

- Number of items: 34. Capacity: 258
 - Recursive knapsack. Answer: 433, time: 111.77610595
 - Dynamic knapsack. Answer: 433, time: 2.6353E-5
- Number of items: 35. Capacity: 199
 - Recursive knapsack. Answer: 318, time: 154.049166387
 - Dynamic knapsack. Answer: 318, time: 2.3673E-5
- Number of items: 36. Capacity: 260
 - Recursive knapsack. Answer: 436, time: 451.122478468
 - Dynamic knapsack. Answer: 436, time: 3.0373E-5
- Number of items: 37. Capacity: 238
 - Recursive knapsack. Answer: 411, time: 636.560835011
 - Dynamic knapsack. Answer: 411, time: 3.5285E-5
- Number of items: 38. Capacity: 308