"Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"
- Richard E. Bellman

A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term Dynamic Programming coined by mathematician Richard Bellman in early 1950s
 - employed by Rand Corporation
 - Rand had many, large military contracts
 - Secretary of Defense, Charles Wilson “against research, especially mathematical research”
 - how could any one oppose "dynamic"?

Dynamic Programming
- Break big problem up into smaller problems ...
- Sound familiar?
- Recursion?
 \[
 N! = 1 \text{ for } N == 0 \\
 N! = N \times (N - 1)! \text{ for } N > 0
 \]

Fibonacci Numbers
- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, …
- \(F_1 = 1 \)
- \(F_2 = 1 \)
- \(F_N = F_{N-1} + F_{N-2} \)
- Recursive Solution?
Naïve recursive method

```java
public int fib(int n) {
    if (n <= 2) {
        return 1;
    } else {
        return fib(n - 1) + fib(n - 2);
    }
}
```

Order of this method?

A. O(1) B. O(log N) C. O(N) D. O(N^2) E. O(2^N)

How long to calculate the 70th Fibonacci Number with this method?

A. 37 seconds B. 74 seconds C. 740 seconds D. 14,800 seconds E. None of these
Aside - Overflow

- at 47th Fibonacci number overflows int
- Could use BigInteger class instead

```java
private static final BigInteger one = new BigInteger("1");

private static final BigInteger two = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```

Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower due to creation of so many objects

<table>
<thead>
<tr>
<th>Fibonacci number</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37th</td>
<td>2.406739213s</td>
</tr>
<tr>
<td>38th</td>
<td>3.680196724s</td>
</tr>
<tr>
<td>39th</td>
<td>5.941275208s</td>
</tr>
<tr>
<td>40th</td>
<td>9.63855468s</td>
</tr>
<tr>
<td>41st</td>
<td>15.659745756s</td>
</tr>
<tr>
<td>42th</td>
<td>25.404417949s</td>
</tr>
<tr>
<td>43rd</td>
<td>40.867030512s</td>
</tr>
<tr>
<td>44th</td>
<td>66.391845965s</td>
</tr>
<tr>
<td>45th</td>
<td>106.964369924s</td>
</tr>
<tr>
<td>46th</td>
<td>178.981819822s</td>
</tr>
<tr>
<td>47th</td>
<td>287.052365326s</td>
</tr>
</tbody>
</table>

Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number **24,157,817** times!!!

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```java
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for (int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;
}
```
Memoization

- Store (cache) results from functions for later lookup
- Memoization of Fibonacci Numbers

```java
public class FibMemo {
    private static List<BigInteger> lookupTable = new ArrayList<>();
    private static final BigInteger one = new BigInteger("1");

    static {
        // no fib for n -- 0
        lookupTable.add(null);
        lookupTable.add(one);
        lookupTable.add(one);
    }

    public static BigInteger fib(int n) {
        // check lookup table
        if (n < lookupTable.size()) {
            return lookupTable.get(n);
        }

        BigInteger smallTerm = lookupTable.get(lookupTable.size() - 2);
        BigInteger largeTerm = lookupTable.get(lookupTable.size() - 1);

        for (int i = lookupTable.size(); i <= n; i++) {
            BigInteger temp = largeTerm;
            largeTerm = largeTerm.add(smallTerm);
            smallTerm = temp;
            lookupTable.add(largeTerm); // memo
        }

        return largeTerm;
    }
}
```
Dynamic Programming

- When to use?
- When a big problem can be broken up into sub problems.
- **Solution to original problem can be calculated from results of smaller problems.**
- Sub problems have a natural ordering from smallest to largest OR simplest to hardest.
 - Larger problems depend on previous solutions
- Multiple techniques within DP

Dynamic Programming Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values \(V_1, V_2, \ldots, V_N\) and a target sum \(S\), find the fewest coins required to equal \(S\)
- What is Greedy Algorithm approach?
- Does it always work?
- \(\{1, 5, 12\}\) and target sum = 15
- Could use recursive backtracking ...

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values \(\{1, 5, 12\}\) start with sum 0
 - Recursive backtracking would likely start with 15
- Let \(M(S) = \text{minimum number of coins to sum to } S\)
- At each step look at target sum, coins available, and previous sums
 - Pick the smallest option
Minimum Number of Coins

- $M(0) = 0$ coins
- $M(1) = 1$ coin (1 coin)
- $M(2) = 2$ coins (1 coin + M(1))
- $M(3) = 3$ coins (1 coin + M(2))
- $M(4) = 4$ coins (1 coin + M(3))
- $M(5) = 2$ options available:
 - 1 + others OR single 5
 - if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1 clearly better to pick the coin worth 5

Knapsack Problem

- A *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the *value* of the items you put in the knapsack without exceeding the weight limit
Knapsack Example

Items:

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
<th>Value per unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>3.167</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>1.714</td>
</tr>
</tbody>
</table>

Weight Limit = 8

One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)

Total value = 6 + 11 + 12 = 29

Is this optimal? A. No B. Yes

Knapsack - Recursive Backtracking

```java
private static int knapsack(ArrayList<Item> items, int current, int capacity) {
    int result = 0;
    if (current < items.size()) {
        // don't use item
        int withoutItem = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        if (currentItem.weight <= capacity) {
            withItem = knapsack(items, current + 1, capacity - currentItem.weight);
            result = Math.max(withoutItem, withItem);
        }
    }
    return result;
}
```

Knapsack - Dynamic Programming

Recursive backtracking starts with max capacity and makes choice for items:
choices are:
- take the item if it fits
- don't take the item

Dynamic Programming, start with simpler problems
Reduce number of items available
AND Reduce weight limit on knapsack
Creates a 2d array of possibilities

Knapsack - Optimal Function

OptimalSolution(items, weight) is best solution given a subset of items and a weight limit

2 options:

OptimalSolution does not select ith item
- select best solution for items 1 to i - 1 with weight limit of w

OptimalSolution selects ith item
- New weight limit = w - weight of ith item
- select best solution for items 1 to i - 1 with new weight limit
Knapsack Optimal Function

- OptimalSolution(items, weight limit) =
 0 if 0 items

 OptimalSolution(items - 1, weight) if weight of
 ith item is greater than allowed weight
 \(w_i > w\) (In others ith item doesn't fit)

 max of (OptimalSolution(items - 1, w),
 value of ith item +
 OptimalSolution(items - 1, w - w_i))

Knapsack - Algorithm

- Create a 2d array to store
 value of best option given
 subset of items and
 possible weights

- In our example 0 to 6
 items and weight limits of of 0 to 8

- Fill in table using OptimalSolution Function

Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
 M[0, w] = 0

For item = 1 to N
 for weight = 1 to WeightLimit
 if(weight of ith item > weight)
 M[item, weight] = M[item - 1, weight]
 else
 M[item, weight] = max of
 M[item - 1, weight] AND
 value of item + M[item - 1, weight - weight of item]

Knapsack - Table

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>items / capacity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5,6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Knapsack - Completed Table

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1} [1, 6]</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1,2} [2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1,2,3} [4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1,2,3,4} [4,12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>{1,2,3,4,5} [6,19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Knapsack - Items to Take

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1} [1, 6]</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1,2} [2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1,2,3} [4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1,2,3,4} [4,12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>{1,2,3,4,5} [6,19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Dynamic Knapsack

```java
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];

    for(int item = 1; item <= items.size(); item++) {
        for(int capacity = 0; capacity <= maxCapacity; capacity++) {
            int best = partialSolutions[item - 1][capacity];
            if(currentItem.weight <= capacity) {
                int withItem = currentItem.value;
                int capLeft = capacity - currentItem.weight;
                withItem += partialSolutions[item - 1][capLeft];
                if(withItem > best)
                    best = withItem;
            }
            partialSolutions[item][capacity] = best;
        }
    }

    return partialSolutions[ROWS - 1][COLS - 1];
}
```

Dynamic vs. Recursive Backtracking

- **Number of items**: 34. **Capacity**: 258
 - Recursive knapsack. **Answer**: 433, **time**: 111.76610595
 - Dynamic knapsack. **Answer**: 433, **time**: 2.6353E-5
- **Number of items**: 35. **Capacity**: 199
 - Recursive knapsack. **Answer**: 318, **time**: 154.049166387
 - Dynamic knapsack. **Answer**: 318, **time**: 2.3673E-5
- **Number of items**: 36. **Capacity**: 260
 - Recursive knapsack. **Answer**: 436, **time**: 451.122478468
 - Dynamic knapsack. **Answer**: 436, **time**: 3.0373E-5
- **Number of items**: 37. **Capacity**: 238
 - Recursive knapsack. **Answer**: 411, **time**: 636.560835011
 - Dynamic knapsack. **Answer**: 411, **time**: 3.5285E-5
- **Number of items**: 38. **Capacity**: 308