Topic 25
Dynamic Programming

"Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"
- Richard E. Bellman

Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term Dynamic Programming coined by mathematician Richard Bellman in early 1950s
 - employed by Rand corporation
 - Rand had many, large military contracts
 - Secretary of Defense against research, especially mathematical research
 - how could any one oppose "dynamic"?

Dynamic Programming

- Break big problem up into smaller problems ...

- Sound familiar?

- Recursion?
 N! = 1 for N == 0
 N! = N * (N - 1)! for N > 0

Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- F₁ = 1
- F₂ = 1
- Fₙ = Fₙ₋₁ + Fₙ₋₂

- Recursive Solution?
Failing Spectacularly

Naïve recursive method

```java
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
        return 1;
    else
        return fib(n - 1) + fib(n - 2);
}
```

Order of this method?
A. O(1) B. O(log N) C. O(N) D. O(N^2) E. O(2^N)

CS314 Dynamic Programming 5

Failing Spectacularly

| 1st fibonacci number: 1 - Time: 4.467E-6 |
| 2nd fibonacci number: 1 - Time: 4.47E-7 |
| 3rd fibonacci number: 2 - Time: 4.46E-7 |
| 4th fibonacci number: 3 - Time: 4.46E-7 |
| 5th fibonacci number: 5 - Time: 4.47E-7 |
| 6th fibonacci number: 8 - Time: 4.47E-7 |
| 7th fibonacci number: 13 - Time: 1.34E-6 |
| 8th fibonacci number: 21 - Time: 1.787E-6 |
| 9th fibonacci number: 34 - Time: 2.233E-6 |
| 10th fibonacci number: 55 - Time: 3.573E-6 |
| 11th fibonacci number: 89 - Time: 1.2953E-5 |
| 12th fibonacci number: 144 - Time: 8.934E-6 |
| 13th fibonacci number: 233 - Time: 2.9033E-5 |
| 14th fibonacci number: 377 - Time: 3.7966E-5 |
| 15th fibonacci number: 610 - Time: 5.0919E-5 |
| 16th fibonacci number: 987 - Time: 7.1464E-5 |
| 17th fibonacci number: 1597 - Time: 1.08984E-4 |

CS314 Dynamic Programming 11

Failing Spectacularly

36th fibonacci number: 14930352 - Time: 0.045372057
37th fibonacci number: 24157817 - Time: 0.07195386
38th fibonacci number: 39088169 - Time: 0.116922086
39th fibonacci number: 63245986 - Time: 0.186926245
40th fibonacci number: 102334155 - Time: 0.308602967
41th fibonacci number: 165580141 - Time: 0.49858795
42th fibonacci number: 267914296 - Time: 0.793824734
43th fibonacci number: 433494437 - Time: 1.323325593
44th fibonacci number: 701408733 - Time: 2.098209943
45th fibonacci number: 1134903170 - Time: 3.392917489
46th fibonacci number: 1836311903 - Time: 5.506675921
47th fibonacci number: -1323752223 - Time: 8.803592621
48th fibonacci number: 512559680 - Time: 14.295023778
49th fibonacci number: -81192543 - Time: 23.030062974
50th fibonacci number: -298632863 - Time: 37.217244704
51th fibonacci number: -1109825406 - Time: 60.224418869

50th fibonacci number: -298632863 - Time: 37.217

How long to calculate the 70th Fibonacci Number with this method?

A. 37 seconds
B. 74 seconds
C. 740 seconds
D. 14,800 seconds
E. None of these

CS314 Dynamic Programming 8
Aside - Overflow

- at 47th Fibonacci number overflows int
- Could use BigInteger class instead

```java
private static final BigInteger one = new BigInteger("1");

private static final BigInteger two = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if(n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```java
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for(int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;
}
```

Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number 24,157,817 times!!!
Fast Fibonacci

1th fibonacci number: 1 - Time: 4.467E-6
2th fibonacci number: 1 - Time: 4.47E-7
3th fibonacci number: 2 - Time: 7.146E-6
4th fibonacci number: 3 - Time: 2.68E-6
5th fibonacci number: 5 - Time: 2.68E-6
6th fibonacci number: 8 - Time: 2.679E-6
7th fibonacci number: 13 - Time: 3.573E-6
8th fibonacci number: 21 - Time: 4.02E-6
9th fibonacci number: 34 - Time: 4.466E-6
10th fibonacci number: 55 - Time: 4.467E-6
11th fibonacci number: 89 - Time: 4.913E-6
12th fibonacci number: 144 - Time: 6.253E-6
13th fibonacci number: 233 - Time: 6.253E-6
14th fibonacci number: 377 - Time: 5.806E-6
15th fibonacci number: 610 - Time: 6.7E-6
16th fibonacci number: 987 - Time: 7.146E-6
17th fibonacci number: 1597 - Time: 7.146E-6

Fast Fibonacci

45th fibonacci number: 1134903170 - Time: 1.7419E-5
46th fibonacci number: 1836311903 - Time: 1.6972E-5
47th fibonacci number: 2971215073 - Time: 1.6973E-5
48th fibonacci number: 4807526976 - Time: 2.3673E-5
49th fibonacci number: 778742049 - Time: 1.9653E-5
50th fibonacci number: 12586269025 - Time: 2.01E-5
51th fibonacci number: 20365011074 - Time: 1.9207E-5
52th fibonacci number: 32951280099 - Time: 2.0546E-5
67th fibonacci number: 44945570212853 - Time: 2.3673E-5
68th fibonacci number: 72723460248141 - Time: 2.3673E-5
69th fibonacci number: 117669030460994 - Time: 2.412E-5
70th fibonacci number: 190392490709135 - Time: 2.4566E-5
71th fibonacci number: 308061521170129 - Time: 2.4566E-5
72th fibonacci number: 498454011879264 - Time: 2.5906E-5
73th fibonacci number: 80651553049393 - Time: 2.5459E-5
74th fibonacci number: 1304969544928657 - Time: 2.546E-5
200th fibonacci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-1

Memoization

- Store (cache) results from functions for later lookup
- Memoization of Fibonacci Numbers

```java
public class FibMemo {
    public static BigInteger fib(int n) {
        // check lookup table
        if (n < lookupTable.size())
            return lookupTable.get(n);

        // must calculate nth fibonacci
        // don't repeat work
        BigInteger smallTerm = lookupTable.get(lookupTable.size() - 2);
        BigInteger largeTerm = lookupTable.get(lookupTable.size() - 1);
        for (int i = lookupTable.size(); i <= n; i++) {
            BigInteger temp = largeTerm;
            largeTerm = largeTerm.add(smallTerm);
            lookupTable.add(largeTerm); // memo
            smallTerm = temp;
        }
        return largeTerm;
    }
}
```
Dynamic Programming

- When to use?
- When a big problem can be broken up into sub problems.
- Solution to original problem can be calculated from results of smaller problems.
- Sub problems have a natural ordering from smallest to largest.
 - larger problems depend on previous solutions
- Multiple techniques within DP

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Dynamic Programming Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values \(V_1, V_2, \ldots V_N\) and a target sum \(S\), find the fewest coins required to equal \(S\)
- What is Greedy Algorithm approach?
- Does it always work?
- \(\{1, 5, 12\}\) and target sum = 15
- Could use recursive backtracking ...

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values \(\{1, 5, 12\}\) start with sum 0
 - recursive backtracking would likely start with 15
- Let \(M(S) = \) minimum number of coins to sum to \(S\)
- At each step look at target sum, coins available, and previous sums
 - pick the smallest option
Minimum Number of Coins

- \(M(0) = 0 \) coins
- \(M(1) = 1 \) coin (1 coin)
- \(M(2) = 2 \) coins (1 coin + \(M(1) \))
- \(M(3) = 3 \) coins (1 coin + \(M(2) \))
- \(M(4) = 4 \) coins (1 coin + \(M(3) \))
- \(M(5) = \) interesting, 2 options available:
 - 1 + others OR single 5
 - if 1 then \(1 + M(4) = 5 \), if 5 then \(1 + M(0) = 1 \)
 - clearly better to pick the coin worth 5

Minimum Number of Coins

- \(M(0) = 0 \)
- \(M(1) = 1 \) (1 coin)
- \(M(2) = 2 \) (1 coin + \(M(1) \))
- \(M(3) = 3 \) (1 coin + \(M(2) \))
- \(M(4) = 4 \) (1 coin + \(M(3) \))
- \(M(5) = 1 \) (1 coin + \(M(0) \))
- \(M(6) = 2 \) (1 coin + \(M(5) \))
- \(M(7) = 3 \) (1 coin + \(M(6) \))
- \(M(8) = 4 \) (1 coin + \(M(7) \))
- \(M(9) = 5 \) (1 coin + \(M(8) \))
- \(M(10) = 2 \) (1 coin + \(M(5) \))
- Options: 1, 5
- \(M(11) = 2 \) (1 coin + \(M(10) \))
- Options: 1, 5
- \(M(12) = 1 \) (1 coin + \(M(0) \))
- Options: 1, 5, 12
- \(M(13) = 2 \) (1 coin + \(M(12) \))
- Options: 1, 12
- \(M(14) = 3 \) (1 coin + \(M(13) \))
- Options: 1, 12
- \(M(15) = 3 \) (1 coin + \(M(10) \))
- Options: 1, 5, 12

Knapsack Problem

- A *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the **value** of the items you put in the knapsack without exceeding the weight limit
Knapsack Example

- Items:
<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
<th>Value per unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>3.167</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>1.714</td>
</tr>
</tbody>
</table>

- Weight Limit = 8

- One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- Total value = 6 + 11 + 12 = 29
- Is this optimal? A. Yes B. No

Knapsack - Dynamic Programming

- Recursive backtracking starts with max capacity and makes choice for items:
 - choices are:
 - take the item if it fits
 - don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

Knapsack - Recursive Backtracking

```java
private static int knapsack(ArrayList<Item> items, int current, int capacity) {
    int result = 0;
    if (current < items.size()) {
        // don't use item
        int withoutItem = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if (currentItem.weight <= capacity) {
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1, capacity - currentItem.weight);
        }
        result = Math.max(withItem, withoutItem);
    }
    return result;
}
```

Knapsack - Optimal Function

- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- 2 options:
 - OptimalSolution does not select i\text{th} item
 - select best solution for items 1 to i - 1 with weight limit of w
 - OptimalSolution selects i\text{th} item
 - New weight limit = w - weight of i\text{th} item
 - select best solution for items 1 to i - 1 with new weight limit
Knapsack Optimal Function

- \(\text{OptimalSolution(items, weight limit)} = \)

0 if 0 items

\(\text{OptimalSolution(items - 1, weight)} \) if weight of
ith item is greater than allowed weight
\(w_i > w \) (In others \(i^{th} \) item doesn't fit)

\[\text{max of (OptimalSolution(items - 1, w), value of } i^{th} \text{ item} + \]
\[\text{OptimalSolution(items - 1, w - } w_i) \]

Knapsack - Algorithm

- Create a 2d array to store
value of best option given
subset of items and
possible weights

- In our example 0 to 6
items and weight limits of of 0 to 8

- Fill in table using OptimalSolution Function

Knapsack Algorithm

Given \(N \) items and WeightLimit

Create Matrix \(M \) with \(N + 1 \) rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
\(M[0, w] = 0 \)

For item = 1 to \(N \)
for weight = 1 to WeightLimit
 if(\(\text{weight of ith item > weight} \))
 \(M[\text{item, weight}] = M[\text{item - 1, weight}] \)
 else
 \(M[\text{item, weight}] = \text{max of} \)
 \(M[\text{item - 1, weight}] \) AND
 value of item + \(M[\text{item - 1, weight - weight of item}] \)

Knapsack - Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dynamic Knapsack

```java
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];

    for (int item = 1; item <= items.size(); item++) {
        for (int capacity = 0; capacity <= maxCapacity; capacity++) {
            Item currentItem = items.get(item - 1);
            int best = partialSolutions[item - 1][capacity];
            if (currentItem.weight <= capacity) {
                int withItem = currentItem.value +
                              (int) Math.min(capacity - currentItem.weight,
                                          partialSolutions[item - 1][capLeft]);
                if (withItem > best) best = withItem;
            }
            partialSolutions[item][capacity] = best;
        }
    }
    return partialSolutions[ROWS - 1][COLS - 1];
}
```

Dynamic vs. Recursive Backtracking

Number of items: 34. Capacity: 258
Recursive knapsack. Answer: 433, time: 111.77610595
Dynamic knapsack. Answer: 433, time: 2.6353E-5
Number of items: 35. Capacity: 199
Recursive knapsack. Answer: 318, time: 154.049166387
Dynamic knapsack. Answer: 318, time: 2.3673E-5
Number of items: 36. Capacity: 260
Recursive knapsack. Answer: 436, time: 451.122478468
Dynamic knapsack. Answer: 436, time: 3.0373E-5
Number of items: 37. Capacity: 238
Recursive knapsack. Answer: 411, time: 636.560835011
Dynamic knapsack. Answer: 411, time: 3.5285E-5
Number of items: 38. Capacity: 308