Topic 10
Abstract Classes

“I prefer Agassiz in the abstract, rather than in the concrete.”

Back to the Property Example

- There are properties on a monopoly board
- Railroads, Utilities, and Streets are kinds of properties
- One behavior we want in Property is the getRent method
- Problem: How do I get the rent of something that is “just a Property”?

The Property class

```java
public class Property {
    private int cost;
    private String name;

    public int getRent() {
        return hmmmmmm?????
    }
}
```

Doesn’t seem like we have enough information to get the rent if all we know is it is a Property.

Potential Solutions

1. Just leave it for the sub classes.
 - Have each sub class define getRent()
2. Define getRent() in Property and simply return -1.
 - Sub classes override the method with more meaningful behavior.
Leave it to the Sub - Classes

// no getRent() in Property
// Railroad and Utility DO have getRent() methods

public void printRents(Property[] props) {
 for(Property p : props)
 System.out.println(p.getRent());
}

Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

What is result of above code?
A. 200150 B. different every time
C. Syntax error D. Class Cast Exception
E. Null Pointer Exception

Fix by Casting

// no getRent() in Property
public void printRents(Property[] props) {
 for(Property p : props)
 if(p instanceof Railroad)
 System.out.println(((Railroad)p).getRent());
 else if(p instanceof Utility)
 System.out.println(((Utility)p).getRent());
 }

Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

What happens as we add more sub classes of Property?
What happens if one of the objects is just a Property?

Fix with Dummy Method

// getRent() in Property returns -1

public void printRents(Property[] props) {
 for(Property p : props)
 System.out.println(p.getRent());
}

Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

What happens if sub classes don’t override getRent()?
Is that a good answer?

A Better Fix

- We know we want to be able to find the rent of objects that are instances of Property
- The problem is we don’t know how to do that if all we know is it a Property
- Make getRent an abstract method
- Java keyword
Making getRent Abstract

public class Property {
 private int cost;
 private String name;

 public abstract int getRent();
 // I know I want it.
 // Just don’t know how, yet...
}

Methods that are declared abstract have no body
an undefined behavior.

All methods in a Java interface are abstract.

Problems with Abstract Methods

Given getRent() is now an abstract method
what is wrong with the following code?

Property s = new Property();
System.out.println(s.getRent());

Undefined Behavior = Bad

• Not good to have undefined behaviors
• If a class has 1 or more abstract methods,
 the class must also be declared abstract.
 – version of Property shown would cause a
 compile error
• Even if a class has zero abstract methods a
 programmer can still choose to make it
 abstract
 – if it models some abstract thing
 – is there anything that is just a “Mammal”?

Abstract Classes

public abstract class Property {
 private int cost;
 private String name;

 public abstract double getRent();
 // I know I want it.
 // Just don’t know how, yet...
}

// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be called
Property s = new Property(1, 2);
//syntax error
Abstract Classes

- In other words you can’t create instances of objects where the lowest or most specific class type is an abstract class
- Prevents having an object with an undefined behavior
- Why would you still want to have constructors in an abstract class?
- Object variables of classes that are abstract types may still be declared
 Property s; //okay

Sub Classes of Abstract Classes

- Classes that extend an abstract class must provided a working version of any abstract methods from the parent class
 - or they must be declared to be abstract as well
 - could still decide to keep a class abstract regardless of status of abstract methods

Implementing getRent()

```java
public class Railroad extends Property {
    private static final int ONE.Utility.RENT = 4;
    private static final int TWO.Utility.RENT = 10;
    private boolean ownOtherUtility;

    public Railroad(String name, int cost, boolean other) {
        super(name, cost);
    }

    public String toString() {
        return "Utility. own other utility? " + ownOtherUtility;
    }

    public int getRent(int roll) {
        return ownOtherUtility ? roll * TWO.Utility.RENT :
                            roll * TWO.Utility.RENT;
    }

    // other methods not shown
}
```

A Utility Class
Polymorphism in Action

// getRent() in Property is abstract
public void printRents(Property[] props) {
 for (Property p : props)
 System.out.println(p.getRent());
}
• Add the Street class. What needs to change in
 printRents method?
• Inheritance is can be described as new code using
 old code.
• Polymorphism can be described as old code
 using new code.

Comparable in Property

public abstract class Property
 implements Comparable<Property> {
 private int cost;
 private String name;

 public abstract int getRent();

 public int compareTo(Property other) {
 return this.getRent()
 - otherProperty.getRent();
 }
}

Back to Lists

• We suggested having a list interface
public interface IList<E> extends Iterable<E> {
 public void add(E value);
 public int size();
 public E get(int location);
 public E remove(int location);
 public boolean contains(E value);
 public void addAll(List<E> other);
 public boolean containsAll(List<E> other);
}

Data Structures

When implementing data structures:
- Specify an interface
- Create an abstract class that is *skeletal
 implementation* interface
- Create classes that extend the skeletal
 interface