
Topic 12

Introduction to Recursion

"To a man with a hammer,

everything looks like a nail"

-Mark Twain

CS314 Recursion 2

Underneath the Hood.

CS314 Recursion 3

The Program Stack
When you invoke a method in your code

what happens when that method is done?
public class Mice {

public static void main(String[] args) {

int x = 37;

int y = 12;

method1(x, y);

int z = 73;

int m1 = method1(z, x);

method2(x, x);

}

// method1 and method2

// on next slide

CS314 Recursion 4

method1 and method2
// in class Mice

public static int method1(int a, int b) {

int r = 0;

if (b != 0) {

int x = a / b;

int y = a % b;

r = x + y;

}

return r;

}

public static void method2(int x, int y) {

x++;

y--;

int z = method1(y, x);

System.out.print(z);

}

CS314 Recursion 5

The Program Stack
When your program is run on a processor, the

commands are converted into another set of

instructions and assigned memory locations.

– normally a great deal of expansion takes place

public static void main(String[] args) {

int x = 37; // 0

int y = 12; // 1

method1(x, y); // 2

int z = 73; // 3

int m1 = method1(z, x); // 4

method2(x, x); // 7

}

6

Basic CPU Operations
A CPU works via a fetch

command / execute command
loop and a program counter

Instructions stored in memory
(Instructions are data!)

What if the first instruction of the method1 is
stored at memory location 50?

int x = 37; // 0

int y = 12; // 1

method1(x, y); // 2

int z = 73; // 3

int m1 = method1(z, x); // 4

method2(x, x); // 5

CS314 Recursion 7

// in class Mice

public static int method1(int a, int b) {

int r = 0; // 51

if (b != 0) { // 52

int x = a / b; // 53

int y = a % b; // 54

r = x + y; // 55

}

return r; // 56

}

public static void method2(int x, int y) {

x++; // 60

y--; // 61

int z = method1(y, x); // 62

System.out.print(z); // 63

}

CS314 Recursion
8

Clicker 1 - The Program Stack

Instruction 3 is really saying jump to instruction

50 with parameters x and y

In general what happens when method1 finishes?

A. program ends B. goes to instruction 4

C. goes back to whatever method called it

int x = 37; // 1

int y = 12; // 2

method1(x, y); // 3

int z = 73; // 4

int m1 = method1(z, x); // 5

method2(x, x); // 6

CS314 Recursion 9

Activation Records and the

Program Stack
When a method is invoked all the relevant

information about the current method

(variables, values of variables, next line of

code to be executed) is placed in an

activation record

The activation record is pushed onto the

program stack

A stack is a data structure with a single

access point, the top.

CS314 Recursion 10

The Program Stack
Data may either be

added (pushed) or

removed (popped) from

a stack but it is always

from the top.

– A stack of dishes

– which dish do we have

easy access to?

top

Using Recursion

CS314 Recursion 12

A Problem

Write a method that determines how much

space is take up by the files in a directory

A directory can contain files and

directories

How many directories does our code have

to examine?

How would you add up the space taken

up by the files in a single directory

– Hint: don't worry about any sub directories at

first

Clicker 2
How many levels of directories have to be

visited?

A. 0

B. 1

C. 8

D. Infinite

E. Unknown

CS314 Recursion 13

CS314 Recursion 14

Sample Directory Structure

scottm

cs314

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf

AB.pdf

Java File Class
File(String pathname) Creates a new

File instance by converting the given

pathname.

boolean isDirectory() Tests whether

the file denoted by this abstract pathname is

a directory.

File[] listFiles() Returns an array

of abstract pathnames denoting the files in

the directory denoted by this abstract

pathname.

CS314 Recursion 15

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

16

Code for getDirectorySpace()
// pre: dir is a directory and dir != null

public static long spaceUsed(File dir) {

if(dir == null || !dir.isDirectory())

throw new IllegalArgumentException();

long spaceUsed = 0;

File[] subFilesAndDirs = dir.listFiles();

if(subFilesAndDirs != null)

for(File sub : subFilesAndDirs)

if(sub != null)

if(sub.isFile()) // sub is a plain old file

spaceUsed += sub.length();

else if (sub.isDirectory())

// else sub is a directory

spaceUsed += spaceUsed(sub);

return spaceUsed;

}

Clicker 3
Is it possible to write a non recursive method

to determine space taken up by files in a

directory, including its subdirectories, and

their subdirectories, and their subdirectories,

and so forth?

A. No

B. Yes

C. It Depends

CS314 Recursion 17

CS314 Recursion 18

Iterative getDirectorySpace()
public long getDirectorySpace(File d) {

ArrayList<File> dirs = new ArrayList<>();

dirs.add(d);

long total = 0;

while (dirs.size() > 0) {

File temp = dirs.remove(dirs.size() – 1);

File[] filesAndSubs = temp.listFiles();

if (filesAndSubs != null) {

for (File f : filesAndSubs) {

if (f != null) {

if (f.isFile())

total += f.length();

else if (f.isDirectory())

dirs.add(f);

}

}

}

return total;

}

Wisdom for Writing Recursive

Methods

CS314 Recursion 20

The 3 plus 1 rules of Recursion

1. Know when to stop

2. Decide how to take one step

3. Break the journey down into that step and a

smaller journey

4. Have faith

From Common Lisp: A Gentle

Introduction to

Symbolic Computation

by David Touretzky

CS314 Recursion 21

Writing Recursive Methods
 Rules of Recursion

1. Base Case: Always have at least one case that
can be solved without using recursion

2. Make Progress: Any recursive call must
progress toward a base case.

3. "You gotta believe." Always assume that the
recursive call works. (Of course you will have to
design it and test it to see if it works or prove
that it always works.)

A recursive solution solves a small part of
the problem and leaves the rest of the
problem in the same form as the original

CS314 Recursion 22

N!
the classic first recursion problem / example

N!

5! = 5 * 4 * 3 * 2 * 1 = 120

int res = 1;

for(int i = 2; i <= n; i++)

res *= i;

CS314 Recursion 23

Factorial Recursively
Mathematical Definition of Factorial

for N >= 0, N! is:
0! = 1

N! = N * (N - 1)! (for N > 0)

The definition is recursive.
// pre n >= 0

public int fact(int n) {

if(n == 0)

return 1;

else

return n * fact(n-1);

} // return (n == 0) ? 1 : n * fact(n - 1);

CS314 Recursion 24

Tracing Fact With the

Program Stack

System.out.println(fact(4));

System.out.println(fact(4));top

CS314 Recursion 25

Calling fact with 4

System.out.println(fact(4));top

n 4

partial result = n * fact(n-1)

in method fact

CS314 Recursion 26

Calling fact with 3

System.out.println(fact(4));

top n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

CS314 Recursion 27

Calling fact with 2

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

CS314 Recursion 28

Calling fact with 1

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * fact(n-1)

in method fact

CS314 Recursion 29

Calling fact with 0 and returning 1

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * fact(n-1)

in method fact

n 0

returning 1 to whatever method called me

in method fact

CS314 Recursion 30

Returning 1 from fact(1)

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * 1,

return 1 to whatever method called me

in method fact

CS314 Recursion 31

Returning 2 from fact(2)

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2 in method fact

partial result = 2 * 1,

return 2 to whatever method called me

CS314 Recursion 32

Returning 6 from fact(3)

System.out.println(fact(4));

top n 4

partial result = n * fact(n-1)

in method fact

n 3 in method fact

partial result = 3 * 2,

return 6 to whatever method called me

CS314 Recursion 33

Returning 24 from fact(4)

System.out.println(fact(4));top

n 4 in method fact

partial result = 4 * 6,

return 24 to whatever method called me

CS314 Recursion 34

Calling System.out.println

System.out.println(24);

top ??

Evaluating Recursive Methods

CS314 Recursion 36

Evaluating Recursive Methods
you must be able to evaluate recursive

methods

public static int mystery (int n){

if(n == 0)

return 2;

else

return 3 * mystery(n-1);

}

// what is returned by mystery(3)

CS314 Recursion 37

Evaluating Recursive Methods
Draw the program stack!

with practice you can see the result

m(3) = 3 * m(2) -> 3 * 18 = 54

m(2) = 3 * m(1) -> 3 * 6 = 18

m(1) = 3 * m(0) -> 3 * 2 = 6

m(0) = 2

-> 54

Clicker 4
What is returned by fact(-3) ?

A. 0

B. 1

C. Infinite loop

D. Syntax error

E. Runtime error
public static int fact(int n) {

if (n == 0) {

return 1;

} else {

return n * fact(n - 1);

}

}
38

CS314 Recursion 39

Evaluating Recursive Methods
What about multiple recursive calls?

public static int bar(int n){

if (n <= 0)

return 2;

else

return 3 + bar(n-1) + bar(n-2);

}

Clicker 5 - What does bar(4) return?

A. 2 B. 3 C. 12 D. 22 E. 37

CS314 Recursion 40

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + b(1) + b(0)

b(1) = 3 + b(0) + b(-1)

b(0) = 2

b(-1) = 2

CS314 Recursion 41

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + b(1) + b(0) //substitute in results

b(1) = 3 + 2 + 2 = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 42

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + 7 + 2 =12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 43

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + 12 + 7 = 22

b(2) = 12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 44

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + 22 + 12 = 37

b(3) = 22

b(2) = 12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 45

Recursion Practice
Write a method raiseToPower(int base,

int power)

//pre: power >= 0

Simple recursion (also called tail recursion)

CS314 Recursion 46

Finding the Maximum in an Array

public int max(int[] data) {

Helper method or create smaller arrays each

time

Clicker 6
When writing recursive methods what should

be done first?

A. Determine recursive case

B. Determine recursive step

C. Make a recursive call

D. Determine base case(s)

E. Determine the Big O

CS314 Recursion 47

CS314 Recursion 48

Your Meta Cognitive State
Remember we are learning to use a tool.

It is not a good tool for all problems.

– In fact we will implement several algorithms and

methods where an iterative (looping without

recursion) solution would work just fine

After learning the mechanics and basics of

recursion the real skill is knowing what

problems or class of problems to apply it to

CS314 Recursion 49

Big O and Recursion
Determining the Big O of recursive methods

can be tricky.

A recurrence relation exits if the function is

defined recursively.

The T(N), actual running time, for N! is

recursive

T(N)fact = T(N-1)fact + O(1)

This turns out to be O(N)

– There are N steps involved

CS314 Recursion 50

Common Recurrence Relations
T(N) = T(N/2) + O(1) -> O(logN)

– binary search

T(N) = T(N-1) + O(1) -> O(N)
– sequential search, factorial

T(N) = T(N/2) + T(N/2) + O(1) -> O(N),
– tree traversal

T(N) = T(N-1) + O(N) -> O(N^2)
– selection sort

T(N) = T(N/2) + T(N/2) + O(N) -> O(NlogN)
– merge sort

T(N) = T(N-1) + T(N-1) + O(1) -> O(2^N)
– Fibonacci

