"bit twiddling: 1. (pejorative) An exercise in tuning (see tune) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7
Clicker Question 1

- "My program finds all the primes between 2 and 1,000,000,000 in 1.37 seconds."
 - how efficient is my solution?

A. Good
B. Bad
C. It depends
Efficiency

- Computer Scientists don’t just write programs.
- They also *analyze* them.
- How efficient is a program?
 - How much time does it take program to complete?
 - How much memory does a program use?
 - How do these change as the amount of data changes?
 - What is the difference between the best case and worst case efficiency if any?
Technique

- Informal approach for this class
 - more formal techniques in theory classes

- Many simplifications
 - view algorithms as Java programs
 - count executable statements in program or method
 - find number of statements as function of the amount of data
 - focus on the *dominant term* in the function
Counting Statements

```java
int x; // one statement
x = 12; // one statement
int y = z * x + 3 % 5 * x / i; // 1
x++; // one statement
boolean p = x < y && y % 2 == 0 ||
        z >= y * x; // 1
int[] list = new int[100]; // 100
list[0] = x * x + y * y; // 1
```
Clicker Question 2

- What is output by the following code?

```
int total = 0;
for(int i = 0; i < 13; i++)
    for(int j = 0; j < 11; j++)
        total += 2;
System.out.println( total );
```

A. 24
B. 120
C. 143
D. 286
E. 338
Clicker Question 3

What is output when method `sample` is called?

```java
public static void sample(int n, int m) {
    int total = 0;
    for(int i = 0; i < n; i++)
        for(int j = 0; j < m; j++)
            total += 5;
    System.out.println( total );
}
```

A. 5
B. n * m
C. n * m * 5
D. n^m
E. (n * m)^5
public int total(int[] values) {
 int result = 0;
 for(int i = 0; i < values.length; i++)
 result += values[i];
 return result;
}

- How many statements are executed by method total as a function of values.length

- Let N = values.length
 - N is commonly used as a variable that denotes the amount of data
Counting Up Statements

- `int result = 0;` 1
- `int i = 0;` 1
- `i < values.length;` \(N + 1\)
- `i++;` \(N\)
- `result += values[i];` \(N\)
- `return total;` 1

\[T(N) = 3N + 4 \]

\(T(N)\) is the number of executable statements in method `total` as a function of `values.length`
Another Simplification

- When determining complexity of an algorithm we want to simplify things
 - hide some details to make comparisons easier
- Like assigning your grade for course
 - At the end of CS314 your transcript won’t list all the details of your performance in the course
 - it won’t list scores on all assignments, quizzes, and tests
 - simply a letter grade, B- or A or D+
- So we focus on the dominant term from the function and ignore the coefficient
The most common method and notation for discussing the execution time of algorithms is Big O, also spoken Order.

Big O is the asymptotic execution time of the algorithm.

Big O is an upper bounds.

It is a mathematical tool.

Hide a lot of unimportant details by assigning a simple grade (function) to algorithms.
Formal Definition of Big O

- \(T(N) \) is \(O(F(N)) \) if there are positive constants \(c \) and \(N_0 \) such that \(T(N) \leq cF(N) \) when \(N \geq N_0 \)
 - \(N \) is the size of the data set the algorithm works on
 - \(T(N) \) is a function that characterizes the \textit{actual} running time of the algorithm
 - \(F(N) \) is a function that characterizes an upper bounds on \(T(N) \). It is a limit on the running time of the algorithm. (The typical Big functions table)
 - \(c \) and \(N_0 \) are constants
What it Means

- \(T(N) \) is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code

- \(F(N) \) is the function that bounds the growth rate
 - may be upper or lower bound

- \(T(N) \) may not necessarily equal \(F(N) \)
 - constants and lesser terms ignored because it is a bounding function
Showing $O(N)$ is Correct

- Recall the formal definition of Big O:
 - $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N > N_0$.

- Recall method $total$, $T(N) = 3N + 4$
 - show method $total$ is $O(N)$.
 - $F(N)$ is N

- We need to choose constants c and N_0

- how about $c = 4$, $N_0 = 5$?
vertical axis: time for algorithm to complete. (simplified to number of executable statements)

\[c \times F(N), \text{ in this case, } c = 4, c \times F(N) = 4N \]

\[T(N), \text{ actual function of time. In this case } 3N + 4 \]

\[F(N), \text{ approximate function of time. In this case } N \]

\[N_0 = 5 \]

horizontal axis: N, number of elements in data set
Typical Big O Functions – "Grades"

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N!$</td>
<td>factorial</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
<tr>
<td>N^d, $d > 3$</td>
<td>Polynomial</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>$N \sqrt{N}$</td>
<td>N Square root N</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>$N \log N$</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>Root - n</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
</tbody>
</table>
Clicker Question 4

Which of the following is true?

A. Method total is $O(N)$
B. Method total is $O(N^2)$
C. Method total is $O(N!)$
D. Method total is $O(N^N)$
E. All of the above are true
What do I do about method calls?

double sum = 0.0;
for(int i = 0; i < n; i++)
 sum += Math.sqrt(i);

Long way
– go to that method or constructor and count statements

Short way
– substitute the simplified Big O function for that method.
– if Math.sqrt is constant time, O(1), simply count
 sum += Math.sqrt(i); as one statement.
Dealing With Other Methods

public int foo(int[] list) {
 int total = 0;
 for(int i = 0; i < list.length; i++)
 total += countDups(list[i], list);
 return total;
}

// method countDups is O(N) where N is the
// length of the array it is passed

What is the Big O of foo?
A. O(1) B. O(N) C. O(NlogN)
D. O(N^2) E. O(N!)
// from the Matrix class
public void scale(int factor) {
 for (int r = 0; r < numRows(); r++)
 for (int c = 0; c < numCols(); c++)
 iCells[r][c] *= factor;
}

Assume an numRows() = N and numCols() = N. In other words, a square Matrix.
numRows and numCols are O(1)

What is the T(N)? What is the Big O?
A. O(1) B. O(N) C. O(NlogN)
D. O(N²) E. O(N!)
Just Count Loops, Right?

// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns

int numThings = 0;
for(int r = row - 1; r <= row + 1; r++)
 for(int c = col - 1; c <= col + 1; c++)
 if(mat[r][c])
 numThings++;

What is the order of the above code?
A. O(1) B. O(N) C. O(N^2) D. O(N^3) E. O(N^{1/2})
It is Not Just Counting Loops

// Second example from previous slide could be rewritten as follows:

int numThings = 0;
if(mat[r-1][c-1]) numThings++;
if(mat[r-1][c]) numThings++;
if(mat[r-1][c+1]) numThings++;
if(mat[r][c-1]) numThings++;
if(mat[r][c]) numThings++;
if(mat[r][c+1]) numThings++;
if(mat[r+1][c-1]) numThings++;
if(mat[r+1][c]) numThings++;
if(mat[r+1][c+1]) numThings++;
Sidetrack, the logarithm

- Thanks to Dr. Math
- $3^2 = 9$
- likewise $\log_3 9 = 2$
 - "The log to the base 3 of 9 is 2."
- The way to think about log is:
 - "the log to the base x of y is the number you can raise x to to get y."
 - Say to yourself "The log is the exponent." (and say it over and over until you believe it.)
 - In CS we work with base 2 logs, a lot
- $\log_2 32 = ?$ $\log_2 8 = ?$ $\log_2 1024 = ?$ $\log_{10} 1000 = ?$
When Do Logarithms Occur

- Algorithms have a logarithmic term when they use a divide and conquer technique
- the data set keeps getting divided by 2

```java
public int foo(int n) {
    // pre n > 0
    int total = 0;
    while (n > 0) {
        n = n / 2;
        total++;
    }
    return total;
}
```

What is the order of the above code?

A. O(1)
B. O(logN)
C. O(N)
D. O(Nlog N)
E. O(N^2)
Significant Improvement – Algorithm with Smaller Big O function

- Problem: Given an array of ints replace any element equal to 0 with the maximum positive value to the right of that element. (if no positive value to the right, leave unchanged.)

Given:
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]
Replace Zeros – Typical Solution

public void replace0s(int[] data) {
 for (int i = 0; i < data.length - 1; i++)
 if (data[i] == 0) {
 int max = 0;
 for (int j = i + 1; j < data.length; j++)
 max = Math.max(max, data[j]);
 data[i] = max;
 }
}

Assume all values are zeros. (worst case)
Example of a dependent loops.
public void replace0s(int[] data){
 int max =
 Math.max(0, data[data.length - 1]);
 int start = data.length - 2;
 for(int i = start; i >= 0; i--){
 if(data[i] == 0)
 data[i] = max;
 else
 max = Math.max(max, data[i]);
 }
}

Big O of this approach?
A. O(1) B. O(N) C. O(NlogN)
D. O(N^2) E. O(N!)

A Useful Proportion

Since $F(N)$ is characterizes the running time of an algorithm the following proportion should hold true:

$$\frac{F(N_0)}{F(N_1)} \approx \frac{\text{time}_0}{\text{time}_1}$$

An algorithm that is $O(N^2)$ takes 3 seconds to run given 10,000 pieces of data.
- How long do you expect it to take when there are 30,000 pieces of data?
- common mistake
- logarithms?
Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another
- Think about performance when there is a lot of data.
 - "It worked so well with small data sets..."
 - Joel Spolsky, Schlemiel the painter's Algorithm
- Lots of trade offs
 - some data structures good for certain types of problems, bad for other types
 - often able to trade SPACE for TIME.
 - Faster solution that uses more space
 - Slower solution that uses less space
Big O Space

- Big O could be used to specify how much space is needed for a particular algorithm
 - in other words how many variables are needed

- Often there is a \textit{time} – \textit{space tradeoff}
 - can often take less time if willing to use more memory
 - can often use less memory if willing to take longer
 - truly beautiful solutions take less time and space

\textit{The biggest difference between time and space is that you can't reuse time.} - Merrick Furst
Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- Best Case: what is the best we can hope for?
 - least interesting
- Average Case (a.k.a. expected running time): what usually happens with the algorithm?
- Worst Case: what is the worst we can expect of the algorithm?
 - very interesting to compare this to the average case
Best, Average, Worst Case

- To Determine the best, average, and worst case Big O we must make assumptions about the data set
- Best case -> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)
- Worst case -> what are the properties of the data set that will lead to the largest number of executable statements
- Average case -> Usually this means assuming the data is randomly distributed
 - or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?
Another Example

```java
public double minimum(double[] values) {
    int n = values.length;
    double minValue = values[0];
    for(int i = 1; i < n; i++)
        if(values[i] < minValue)
            minValue = values[i];
    return minValue;
}
```

- If no other information, assume asking average case
Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:

 \[\frac{N^2}{10000} + 2N \log_{10} N + 100000 \]

- Is it plausible to say the \(N^2 \) term dominates even though it is divided by 10000 and that the algorithm is \(O(N^2) \)?

- What if we separate the equation into \(\left(\frac{N^2}{10000} \right) \) and \((2N \log_{10} N + 100000) \) and graph the results.
Summing Execution Times

- For large values of N the N^2 term dominates so the algorithm is $O(N^2)$
- When does it make sense to use a computer?
Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is $O(N^2)$
- Algorithm B solves the same problem correctly and is $O(N \log_2 N)$
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this is true
Running Times

Assume \(N = 100,000 \) and processor speed is 1,000,000,000 operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^N)</td>
<td>(3.2 \times 10^{30086}) years</td>
</tr>
<tr>
<td>(N^4)</td>
<td>3171 years</td>
</tr>
<tr>
<td>(N^3)</td>
<td>11.6 days</td>
</tr>
<tr>
<td>(N^2)</td>
<td>10 seconds</td>
</tr>
<tr>
<td>(N\sqrt[4]{N})</td>
<td>0.032 seconds</td>
</tr>
<tr>
<td>(N \log N)</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>(\sqrt{N})</td>
<td>0.0001 seconds</td>
</tr>
<tr>
<td>(\log N)</td>
<td>1.2 \times 10^{-8}) seconds</td>
</tr>
</tbody>
</table>
Theory to Practice OR
Dykstra says: "Pictures are for the Weak."

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>2.2x10^{-5}</td>
<td>2.7x10^{-5}</td>
<td>5.4x10^{-5}</td>
<td>4.2x10^{-5}</td>
<td>6.8x10^{-5}</td>
<td>1.2x10^{-4}</td>
<td>2.3x10^{-4}</td>
<td>5.1x10^{-4}</td>
</tr>
<tr>
<td>O(NlogN)</td>
<td>8.5x10^{-5}</td>
<td>1.9x10^{-4}</td>
<td>3.7x10^{-4}</td>
<td>4.7x10^{-4}</td>
<td>1.0x10^{-3}</td>
<td>2.1x10^{-3}</td>
<td>4.6x10^{-3}</td>
<td>1.2x10^{-2}</td>
</tr>
<tr>
<td>O(N^{3/2})</td>
<td>3.5x10^{-5}</td>
<td>6.9x10^{-4}</td>
<td>1.7x10^{-3}</td>
<td>5.0x10^{-3}</td>
<td>1.4x10^{-2}</td>
<td>3.8x10^{-2}</td>
<td>0.11</td>
<td>0.30</td>
</tr>
<tr>
<td>O(N^2) ind.</td>
<td>3.4x10^{-3}</td>
<td>1.4x10^{-3}</td>
<td>4.4x10^{-3}</td>
<td>0.22</td>
<td>0.86</td>
<td>3.45</td>
<td>13.79</td>
<td>(55)</td>
</tr>
<tr>
<td>O(N^2) dep.</td>
<td>1.8x10^{-3}</td>
<td>7.1x10^{-3}</td>
<td>2.7x10^{-2}</td>
<td>0.11</td>
<td>0.43</td>
<td>1.73</td>
<td>6.90</td>
<td>(27.6)</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>3.40</td>
<td>27.26</td>
<td>(218)</td>
<td>(1745)</td>
<td>(13,957)</td>
<td>(112k)</td>
<td>(896k)</td>
<td>(7.2m)</td>
</tr>
</tbody>
</table>

Times in Seconds. Red indicates predicated value.
Change between Data Points

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
<th>256k</th>
<th>512k</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>-</td>
<td>1.21</td>
<td>2.02</td>
<td>0.78</td>
<td>1.62</td>
<td>1.76</td>
<td>1.89</td>
<td>2.24</td>
<td>2.11</td>
<td>1.62</td>
</tr>
<tr>
<td>O(N\log N)</td>
<td>-</td>
<td>2.18</td>
<td>1.99</td>
<td>1.27</td>
<td>2.13</td>
<td>2.15</td>
<td>2.15</td>
<td>2.71</td>
<td>1.64</td>
<td>2.40</td>
</tr>
<tr>
<td>O(N^{3/2})</td>
<td>-</td>
<td>1.98</td>
<td>2.48</td>
<td>2.87</td>
<td>2.79</td>
<td>2.76</td>
<td>2.85</td>
<td>2.79</td>
<td>2.82</td>
<td>2.81</td>
</tr>
<tr>
<td>O(N^2) ind</td>
<td>-</td>
<td>4.06</td>
<td>3.98</td>
<td>3.94</td>
<td>3.99</td>
<td>4.00</td>
<td>3.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^2) dep</td>
<td>-</td>
<td>4.00</td>
<td>3.82</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>3.98</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>-</td>
<td>8.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Value obtained by $\frac{Time_x}{Time_{x-1}}$
Okay, Pictures

Results on a 2Ghz laptop

- Time
- Value of N

Graph showing the relationship between the value of N and time for different complexity functions: N, NlogN, NsqrtN, and N^2.
Put a Cap on Time

Results on a 2GhZ laptop

Value of N vs. Time

- N
- NlogN
- NsqrtN
- N^2
- N^2

Graph showing the relationship between Value of N and Time for different complexities.
No $O(N^2)$ Data

Results on a 2Ghz laptop

- N
- $N\log N$
- $N\sqrt{N}$

Value of N

Time

CS 314

Efficiency - Complexity
Just $O(N)$ and $O(N\log N)$
Just $O(N)$
10^9 instructions/sec, runtimes

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000000003</td>
<td>0.00000001</td>
<td>0.000000033</td>
<td>0.0000001</td>
</tr>
<tr>
<td>100</td>
<td>0.000000007</td>
<td>0.00000010</td>
<td>0.000000664</td>
<td>0.0001000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.00000010</td>
<td>0.00000100</td>
<td>0.00010000</td>
<td>0.001</td>
</tr>
<tr>
<td>10,000</td>
<td>0.00000013</td>
<td>0.00010000</td>
<td>0.00132900</td>
<td>0.1 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.00000017</td>
<td>0.0010000</td>
<td>0.01661000</td>
<td>10 seconds</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.00000020</td>
<td>0.001</td>
<td>0.0199</td>
<td>16.7 minutes</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.00000030</td>
<td>1.0 second</td>
<td>30 seconds</td>
<td>31.7 years</td>
</tr>
</tbody>
</table>
Formal Definition of Big O (repeated)

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$
 - N is the size of the data set the algorithm works on
 - $T(N)$ is a function that characterizes the *actual* running time of the algorithm
 - $F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm
 - c and N_0 are constants
More on the Formal Definition

- There is a point N_0 such that for all values of N that are past this point, $T(N)$ is bounded by some multiple of $F(N)$.
- Thus if $T(N)$ of the algorithm is $O(N^2)$ then, ignoring constants, at some point we can *bound* the running time by a quadratic function.
- Given a *linear* algorithm it is *technically correct* to say the running time is $O(N^2)$. $O(N)$ is a more precise answer as to the Big O of the linear algorithm.
 - Thus the caveat “pick the most restrictive function” in Big O type questions.
What it All Means

- T(N) is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- F(N) is the function that bounds the growth rate
 - may be upper or lower bound
- T(N) may not necessarily equal F(N)
 - constants and lesser terms ignored because it is a bounding function
Other Algorithmic Analysis Tools

- **Big Omega** \(T(N) \) is \(\Omega(F(N)) \) if there are positive constants \(c \) and \(N_0 \) such that \(T(N) \geq cF(N) \) when \(N \geq N_0 \)
 - Big O is similar to less than or equal, an upper bounds
 - Big Omega is similar to greater than or equal, a lower bound

- **Big Theta** \(T(N) \) is \(\theta(F(N)) \) if and only if \(T(N) \) is \(O(F(N)) \)and \(T(N) \) is \(\Omega(F(N)) \).
 - Big Theta is similar to equals
Relative Rates of Growth

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Mathematical Expression</th>
<th>Relative Rates of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big O</td>
<td>$T(N) = O(F(N))$</td>
<td>$T(N) \leq F(N)$</td>
</tr>
<tr>
<td>Big (\Omega)</td>
<td>$T(N) = \Omega(F(N))$</td>
<td>$T(N) \geq F(N)$</td>
</tr>
<tr>
<td>Big (\theta)</td>
<td>$T(N) = \theta(F(N))$</td>
<td>$T(N) = F(N)$</td>
</tr>
</tbody>
</table>

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss