Topic Number 2
Efficiency – Complexity

Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning (see *tune*) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

Clicker Question 1

- "My program finds all the primes between 2 and 1,000,000,000 in 1.37 seconds."
 - how efficient is my solution?

 A. Good
 B. Bad
 C. It depends

Efficiency

- Computer Scientists don’t just write programs.
- They also *analyze* them.
- How efficient is a program?
 - How much time does it take program to complete?
 - How much memory does a program use?
 - How do these change as the amount of data changes?
 - What is the difference between the best case and worst case efficiency if any?

Technique

- Informal approach for this class
 - more formal techniques in theory classes
- Many simplifications
 - view algorithms as Java programs
 - count executable statements in program or method
 - find number of statements as function of the amount of data
 - focus on the *dominant term* in the function
Counting Statements

```java
int x; // one statement
x = 12; // one statement
int y = z * x + 3 % 5 * x / i; // 1
x++; // one statement
boolean p = x < y && y % 2 == 0 ||
    z >= y * x; // 1
int[] list = new int[100]; // 100
list[0] = x * x + y * y; // 1
```

Clicker Question 2

- What is output by the following code?
  ```java
  int total = 0;
  for(int i = 0; i < 13; i++)
    for(int j = 0; j < 11; j++)
      total += 2;
  System.out.println( total );
  ```

 A. 24
 B. 120
 C. 143
 D. 286
 E. 338

Clicker Question 3

- What is output when method `sample` is called?
  ```java
  public static void sample(int n, int m) {
    int total = 0;
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        total += 5;
    System.out.println( total );
  }
  ```

 A. 5
 B. n * m
 C. n * m * 5
 D. \(n^m \)
 E. \((n \times m)^5 \)

Example

```java
public int total(int[] values) {
    int result = 0;
    for(int i = 0; i < values.length; i++)
        result += values[i];
    return result;
}
```

- How many statements are executed by method `total` as a function of `values.length`?

- Let \(N = values.length \)
 - \(N \) is commonly used as a variable that denotes the amount of data
Counting Up Statements

- int result = 0;
- int i = 0;
- i < values.length; N + 1
- i++ N
- result += values[i]; N
- return total; 1
- T(N) = 3N + 4
- T(N) is the number of executable statements in method total as function of values.length

Another Simplification

- When determining complexity of an algorithm we want to simplify things
 - hide some details to make comparisons easier
- Like assigning your grade for course
 - At the end of CS14 your transcript won’t list all the details of your performance in the course
 - it won’t list scores on all assignments, quizzes, and tests
 - simply a letter grade, B- or A or D+
- So we focus on the dominant term from the function and ignore the coefficient

Big O

- The most common method and notation for discussing the execution time of algorithms is Big O, also spoken Order
- Big O is the asymptotic execution time of the algorithm
- Big O is an upper bound
- It is a mathematical tool
- Hide a lot of unimportant details by assigning a simple grade (function) to algorithms

Formal Definition of Big O

- T(N) is O(F(N)) if there are positive constants c and N₀ such that T(N) ≤ cF(N) when N ≥ N₀
 - N is the size of the data set the algorithm works on
 - T(N) is a function that characterizes the actual running time of the algorithm
 - F(N) is a function that characterizes an upper bounds on T(N). It is a limit on the running time of the algorithm. (The typical Big functions table)
 - c and N₀ are constants
What it Means

- \(T(N) \) is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- \(F(N) \) is the function that bounds the growth rate
 - may be upper or lower bound
- \(T(N) \) may not necessarily equal \(F(N) \)
 - constants and lesser terms ignored because it is a bounding function

Showing \(O(N) \) is Correct

- Recall the formal definition of Big O
 - \(T(N) \) is \(O(F(N)) \) if there are positive constants \(c \) and \(N_0 \) such that \(T(N) \leq cF(N) \) when \(N > N_0 \)
- Recall method \text{total}, \(T(N) = 3N + 4 \)
 - show method \text{total} is \(O(N) \).
 - \(F(N) \) is \(N \)
- We need to choose constants \(c \) and \(N_0 \)
- how about \(c = 4, N_0 = 5 \) ?

Typical Big O Functions – "Grades"

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N!)</td>
<td>factorial</td>
</tr>
<tr>
<td>(2^N)</td>
<td>Exponential</td>
</tr>
<tr>
<td>(N^d, d > 3)</td>
<td>Polynomial</td>
</tr>
<tr>
<td>(N^3)</td>
<td>Cubic</td>
</tr>
<tr>
<td>(N^2)</td>
<td>Quadratic</td>
</tr>
<tr>
<td>(N\sqrt{N})</td>
<td>(N) square root (N)</td>
</tr>
<tr>
<td>(N \log N)</td>
<td>(N) \log (N)</td>
</tr>
<tr>
<td>(N)</td>
<td>Linear</td>
</tr>
<tr>
<td>(\sqrt{N})</td>
<td>Root - (n)</td>
</tr>
<tr>
<td>(\log N)</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
</tbody>
</table>
Clicker Question 4

- Which of the following is true?
 A. Method total is O(N)
 B. Method total is O(N^2)
 C. Method total is O(N!)
 D. Method total is O(N^N)
 E. All of the above are true

Dealing with other methods

- What do I do about method calls?
  ```java
  double sum = 0.0;
  for(int i = 0; i < n; i++)
      sum += Math.sqrt(i);
  ```
- Long way
 - go to that method or constructor and count statements
- Short way
 - substitute the simplified Big O function for that method.
 - if Math.sqrt is constant time, O(1), simply count
  ```java
  sum += Math.sqrt(i); as one statement.
  ```

Dealing With Other Methods

```java
public int foo(int[] list) {
    int total = 0;
    for(int i = 0; i < list.length; i++)
        total += countDups(list[i], list);
    return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed
```

What is the Big O of foo?

- A. O(1)
- B. O(N)
- C. O(NlogN)
- D. O(N^2)
- E. O(N!)

Independent Loops

```java
// from the Matrix class
public void scale(int factor) {
    for(int r = 0; r < numRows(); r++)
        for(int c = 0; c < numCols(); c++)
            iCells[r][c] *= factor;
}
```

Assume an numRows() = N and numCols() = N.
In other words, a square Matrix.
numRows and numCols are O(1)

What is the T(N)? What is the Big O?

- A. O(1)
- B. O(N)
- C. O(NlogN)
- D. O(N^2)
- E. O(N!)
Just Count Loops, Right?

// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns

int numThings = 0;
for(int r = row - 1; r <= row + 1; r++)
 for(int c = col - 1; c <= col + 1; c++)
 if(mat[r][c])
 numThings++;

What is the order of the above code?
A. O(1) B. O(N) C. O(N^2) D. O(N^3) E. O(N^(1/2))

It is Not Just Counting Loops

// Second example from previous slide could be
// rewritten as follows:
int numThings = 0;
if(mat[r-1][c-1]) numThings++;
if(mat[r-1][c]) numThings++;
if(mat[r-1][c+1]) numThings++;
if(mat[r][c-1]) numThings++;
if(mat[r][c]) numThings++;
if(mat[r][c+1]) numThings++;
if(mat[r+1][c-1]) numThings++;
if(mat[r+1][c]) numThings++;
if(mat[r+1][c+1]) numThings++;

Sidetrack, the logarithm

- Thanks to Dr. Math
- 3^2 = 9
- likewise log_3 9 = 2
 - "The log to the base 3 of 9 is 2."
- The way to think about log is:
 - "the log to the base x of y is the number you can raise x to to get y."
 - Say to yourself "The log is the exponent." (and say it over and over until you believe it.)
 - In CS we work with base 2 logs, a lot

- log_2 32 = ? log_2 8 = ? log_2 1024 = ? log_10 1000 = ?

When Do Logarithms Occur

- Algorithms have a logarithmic term when they use a divide and conquer technique
- the data set keeps getting divided by 2

```java
public int foo(int n) {
    // pre n > 0
    int total = 0;
    while( n > 0 ) {
        n = n / 2;
        total++;
    }
    return total;
}
```

- What is the order of the above code?
A. O(1) B. O(logN) C. O(N)
D. O(Nlog N) E. O(N^2)
Significant Improvement – Algorithm with Smaller Big O function

- Problem: Given an array of ints replace any element equal to 0 with the maximum positive value to the right of that element. (if no positive value to the right, leave unchanged.)

 Given:

 \[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]\n
 Becomes:

 \[13, 9, \underline{13}, 13, 7, 7, 7, 1, -1, 1, 1, 0]\n
Replace Zeros – Typical Solution

```java
public void replace0s(int[] data)
    for (int i = 0; i < data.length - 1; i++)
        if (data[i] == 0)
            int max = 0;
        for (int j = i + 1; j < data.length; j++)
            max = Math.max(max, data[j]);
        data[i] = max;

Assume all values are zeros. (worst case)
Example of a dependent loops.
```

Replace Zeros – Alternate Solution

```java
public void replace0s(int[] data) {
    int max = Math.max(0, data[data.length - 1]);
    int start = data.length - 2;
    for (int i = start; i >= 0; i --) {
        if (data[i] == 0)
            data[i] = max;
        else
            max = Math.max(max, data[i]);
    }
}
```

Big O of this approach?

A. O(1)
B. O(N)
C. O(NlogN)
D. O(N^2)
E. O(N!)

A Useful Proportion

- Since \(F(N)\) is characterizes the running time of an algorithm the following proportion should hold true:

 \[\frac{F(N_0)}{F(N_1)} \approx \frac{\text{time}_0}{\text{time}_1}\]

- An algorithm that is \(O(N^2)\) takes 3 seconds to run given 10,000 pieces of data.
 - How long do you expect it to take when there are 30,000 pieces of data?
 - common mistake
 - logarithms?
Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another
- Think about performance when there is a lot of data.
 - "It worked so well with small data sets..."
 - Joel Spolsky, Schlemiel the painter’s Algorithm
- Lots of tradeoffs
 - some data structures good for certain types of problems, bad for other types
 - often able to trade SPACE for TIME.
 - Faster solution that uses more space
 - Slower solution that uses less space

Big O Space

- Big O could be used to specify how much space is needed for a particular algorithm
 - in other words how many variables are needed
- Often there is a time – space tradeoff
 - can often take less time if willing to use more memory
 - can often use less memory if willing to take longer
 - truly beautiful solutions take less time and space

The biggest difference between time and space is that you can't reuse time. - Merrick Furst

Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- Best Case: what is the best we can hope for?
 - least interesting
- Average Case (a.k.a. expected running time): what usually happens with the algorithm?
- Worst Case: what is the worst we can expect of the algorithm?
 - very interesting to compare this to the average case

Best, Average, Worst Case

- To Determine the best, average, and worst case Big O we must make assumptions about the data set
- Best case --> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)
- Worst case --> what are the properties of the data set that will lead to the largest number of executable statements
- Average case --> Usually this means assuming the data is randomly distributed
 - or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?
Another Example

```java
public double minimum(double[] values) {
    int n = values.length;
    double minValue = values[0];
    for (int i = 1; i < n; i++)
        if (values[i] < minValue)
            minValue = values[i];
    return minValue;
}
```

- T(N)? F(N)? Big O? Best case? Worst Case? Average Case?
- If no other information, assume asking average case

Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:
 \[N^2/10000 + 2N \log_{10} N + 100000 \]
- Is it plausible to say the \(N^2 \) term dominates even though it is divided by 10000 and that the algorithm is \(O(N^2) \)?
- What if we separate the equation into \((N^2/10000)\) and \((2N \log_{10} N + 100000)\) and graph the results.

Summing Execution Times

- For large values of \(N \) the \(N^2 \) term dominates so the algorithm is \(O(N^2) \)
- When does it make sense to use a computer?

Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is \(O(N^2) \)
- Algorithm B solves the same problem correctly and is \(O(N \log_2 N) \)
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this is true
Running Times

- Assume N = 100,000 and processor speed is 1,000,000,000 operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^N</td>
<td>3.2 x 10^3086 years</td>
</tr>
<tr>
<td>N⁴</td>
<td>3171 years</td>
</tr>
<tr>
<td>N³</td>
<td>11.6 days</td>
</tr>
<tr>
<td>N²</td>
<td>10 seconds</td>
</tr>
<tr>
<td>√N</td>
<td>0.032 seconds</td>
</tr>
<tr>
<td>N log N</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>N</td>
<td>0.00001 seconds</td>
</tr>
<tr>
<td>√N</td>
<td>3.2 x 10^-2 seconds</td>
</tr>
<tr>
<td>log N</td>
<td>1.2 x 10^-4 seconds</td>
</tr>
</tbody>
</table>

Times in Seconds. Red indicates predicted value.

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>2.2x10⁶</td>
<td>2.7x10⁵</td>
<td>5.4x10⁴</td>
<td>4.2x10³</td>
<td>6.8x10²</td>
<td>1.2x10¹</td>
<td>2.3x10⁰</td>
<td>5.1x10⁻¹</td>
</tr>
<tr>
<td>O(N log N)</td>
<td>8.5x10⁵</td>
<td>1.9x10⁴</td>
<td>3.7x10³</td>
<td>4.7x10²</td>
<td>1.0x10¹</td>
<td>2.1x10⁰</td>
<td>4.6x10⁻¹</td>
<td>1.2x10⁻²</td>
</tr>
<tr>
<td>O(N²)</td>
<td>3.5x10⁴</td>
<td>6.9x10³</td>
<td>1.7x10²</td>
<td>5.0x10¹</td>
<td>1.4x10⁰</td>
<td>3.8x10⁻¹</td>
<td>3.45</td>
<td>(55)</td>
</tr>
<tr>
<td>O(N³) ind</td>
<td>3.4x10³</td>
<td>1.4x10²</td>
<td>4.4x10¹</td>
<td>0.22</td>
<td>0.86</td>
<td>3.45</td>
<td>13.79</td>
<td>(27.6)</td>
</tr>
<tr>
<td>O(N³) dep.</td>
<td>1.8x10⁻¹</td>
<td>7.1x10⁻²</td>
<td>2.7x10⁻¹</td>
<td>0.11</td>
<td>0.43</td>
<td>1.73</td>
<td>6.90</td>
<td>(27.6)</td>
</tr>
<tr>
<td>O(N⁴)</td>
<td>3.40</td>
<td>27.26</td>
<td>(218)</td>
<td>(1745)</td>
<td>29 min.</td>
<td>(13,957)</td>
<td>233 min</td>
<td>(112k)</td>
</tr>
</tbody>
</table>

Theory to Practice OR

Dykstra says: "Pictures are for the Weak."

Change between Data Points

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>-</td>
<td>1.21</td>
<td>2.02</td>
<td>0.78</td>
<td>1.62</td>
<td>1.76</td>
<td>1.89</td>
<td>2.24</td>
</tr>
<tr>
<td>O(N log N)</td>
<td>-</td>
<td>2.18</td>
<td>1.99</td>
<td>1.27</td>
<td>2.13</td>
<td>2.15</td>
<td>2.15</td>
<td>2.71</td>
</tr>
<tr>
<td>O(N²)</td>
<td>-</td>
<td>1.98</td>
<td>2.48</td>
<td>2.87</td>
<td>2.79</td>
<td>2.76</td>
<td>2.85</td>
<td>2.79</td>
</tr>
<tr>
<td>O(N³) ind</td>
<td>-</td>
<td>4.06</td>
<td>3.98</td>
<td>3.94</td>
<td>3.99</td>
<td>4.00</td>
<td>3.99</td>
<td>-</td>
</tr>
<tr>
<td>O(N³) dep.</td>
<td>-</td>
<td>4.00</td>
<td>3.82</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>3.98</td>
<td>-</td>
</tr>
<tr>
<td>O(N⁴)</td>
<td>-</td>
<td>8.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Okay, Pictures

Value obtained by Time_x / Time_x⁻¹

Results on a 2GHz laptop
Put a Cap on Time

No O(N^2) Data

Just O(N) and O(NlogN)

Just O(N)
10^9 instructions/sec, runtimes

<table>
<thead>
<tr>
<th>N</th>
<th>O(log N)</th>
<th>O(N)</th>
<th>O(N log N)</th>
<th>O(N^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0000000003</td>
<td>0.000000001</td>
<td>0.0000000033</td>
<td>0.000001</td>
</tr>
<tr>
<td>100</td>
<td>0.000000007</td>
<td>0.00000010</td>
<td>0.000000664</td>
<td>0.001000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.00000010</td>
<td>0.00001000</td>
<td>0.00010000</td>
<td>0.001</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000000013</td>
<td>0.00010000</td>
<td>0.00132900</td>
<td>0.1 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.00000017</td>
<td>0.00100000</td>
<td>0.001661000</td>
<td>10 seconds</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.00000020</td>
<td>0.001</td>
<td>0.0199</td>
<td>16.7 minutes</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.00000030</td>
<td>1.0 second</td>
<td>30 seconds</td>
<td>31.7 years</td>
</tr>
</tbody>
</table>

Formal Definition of Big O (repeated)

- \(O(\ F(N) \) \) if there are positive constants \(c \) and \(N_0 \) such that \(T(N) \leq cF(N) \) when \(N \geq N_0 \)
 - \(N \) is the size of the data set the algorithm works on
 - \(T(N) \) is a function that characterizes the actual running time of the algorithm
 - \(F(N) \) is a function that characterizes an upper bounds on \(T(N) \). It is a limit on the running time of the algorithm
 - \(c \) and \(N_0 \) are constants

More on the Formal Definition

- There is a point \(N_0 \) such that for all values of \(N \) that are past this point, \(T(N) \) is bounded by some multiple of \(F(N) \)
- Thus if \(T(N) \) of the algorithm is \(O(\ N^2 \)), then, ignoring constants, at some point we can bound the running time by a quadratic function.
- Given a linear algorithm it is technically correct to say the running time is \(O(\ N^2 \)). \(O(N) \) is a more precise answer as to the Big O of the linear algorithm
 - thus the caveat “pick the most restrictive function” in Big O type questions.

What it All Means

- \(T(N) \) is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- \(F(N) \) is the function that bounds the growth rate
 - may be upper or lower bound
- \(T(N) \) may not necessarily equal \(F(N) \)
 - constants and lesser terms ignored because it is a bounding function
Other Algorithmic Analysis Tools

- **Big Omega** \(T(N) = \Omega(F(N)) \) if there are positive constants \(c \) and \(N_0 \) such that \(T(N) \geq cF(N) \) when \(N \geq N_0 \)
 - Big O is similar to less than or equal, an upper bounds
 - Big Omega is similar to greater than or equal, a lower bound

- **Big Theta** \(T(N) = \theta(F(N)) \) if and only if \(T(N) \) is \(O(F(N)) \) and \(T(N) \) is \(\Omega(F(N)) \).
 - Big Theta is similar to equals

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Mathematical Expression</th>
<th>Relative Rates of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big O</td>
<td>(T(N) = O(F(N)))</td>
<td>(T(N) \leq F(N))</td>
</tr>
<tr>
<td>Big (\Omega)</td>
<td>(T(N) = \Omega(F(N)))</td>
<td>(T(N) \geq F(N))</td>
</tr>
<tr>
<td>Big (\theta)</td>
<td>(T(N) = \theta(F(N)))</td>
<td>(T(N) = F(N))</td>
</tr>
</tbody>
</table>

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss