
Topic 3
Encapsulation - Implementing Classes

as ... object-oriented analysis and design
(a clever way of breaking up software
programming instructions and data into
small, reusable objects, based on certain
abstraction principles and design

-Michael A. Cusumano,
The Business Of Software

Object Oriented Programming
Creating large programs that work turns out
to be very difficult

DIA Automated baggage handling system

Ariane 5 Flight 501

More

Object oriented programming is one way of
managing the complexity of programming
and software projects

Break up big problems into smaller, more
manageable problems

CS 314 Encapsulation - Implementing Classes 2

CS 314 Encapsulation - Implementing Classes 3

Object Oriented Programming
"Object-oriented programming is a method of
programming based on a hierarchy of classes, and
well-defined and cooperating objects. "

What is a class?

"A class is a structure that defines the data and the
methods to work on that data. When you write
programs in the Java language, all program data is
wrapped in a class, whether it is a class you write
or a class you use from the Java platform API
libraries."

a new data type

Object Oriented Programming
In other words break the problem up based
on the things / data types that are part of the
problem

Not the only way

One of many different kinds of strategies or
paradigms for software development

functional, procedural, event driven, data flow,
formal methods, agile or extreme, ...

In 314 we will do a lot of object based
programming

CS 314 Encapsulation - Implementing Classes 4

CS 314 Encapsulation - Implementing Classes 5

Example - Monopoly
If we had to start
from scratch what
classes would we
need to create?

CS 314 Encapsulation - Implementing Classes 6

Encapsulation
One of the features of object oriented
languages

Allows programmers to define
new data types

Hide the data of an object (variable)

Group operations and data together into a
new data type

Usually easier to use something than
understand exactly how it works

microwave, car, computer, software, mp3 player

Data Structures
A data structure is a variable that stores
other variables. (overly simplified definition)

aka Collection, Container

perspective)

Lists are ordered, sets are typically unordered

May allow duplicate values or not
Lists allow duplicates, sets typically do not

CS 314 Encapsulation - Implementing Classes 7

The IntList Class
We will develop a class that models a list of ints

initially a pale imitation of the Java ArrayList class

Improvement on an array of ints
resize automatically

insert easily

remove easily

A list - our first data structure
a variable that stores other variables

Lists maintain elements in a definite order and
duplicates are allowed
0 1 2 3 4 <- indices / positions

[5, 12, 5, 17, -5] <- elements
CS 314 Encapsulation - Implementing Classes 8

CS 314 Encapsulation - Implementing Classes 9

Clicker 1

Our IntList class has an array of ints instance
variable (int[] container). What should the
length of this internal array be?

A. less than the size of the list

B. equal to the size of the list

C. greater than or equal to the size of the list

D. some fixed amount that never changes

E. 0

Array length less than
the number of elements

in the list?!?

What if most elements are all
the same value? Only store the
elements (and their position) not
equal to the default? Sparse List 10

CS 314 Encapsulation - Implementing Classes 11

Clicker 2
When adding a new element to a list,
where should the new element be
added by default?

A. The beginning

B. The end

C. The middle

D. A random location

CS 314 Encapsulation - Implementing Classes 12

IntList Design
Create a new, empty IntList

new IntList -> []

The above is not code. It is a notation that shows
what the results of operations. [] is an empty list.

add to a list.
[].add(1) -> [1]

[1].add(5) -> [1, 5]

[1, 5].add(4) -> [1, 5, 4]

elements in a list have a definite order and a
position.

zero based position or 1 based positioning?

CS 314 Encapsulation - Implementing Classes 13

0 1 2
[42, 12, 37]

Abstract view of
list of integers

The wall of

abstraction.

IntList aList = new IntList();
aList.add(42);
aList.add(12);

aList.add(37);
aList

IntList

size

con

3

42 12 37 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

CS 314 Encapsulation - Implementing Classes 14

Instance Variables
Internal data

also called instance variables because every
instance (object) of this class has its own copy of
these
something to store the elements of the list
size of internal storage container?
if not what else is needed

Must be clear on the difference between the
internal data of an IntList object and the
IntList that is being represented
Why make internal data private?

CS 314 Encapsulation - Implementing Classes 15

Constructors
For initialization of objects

IntList constructors
default

initial capacity?

redirecting to another constructor
this(10);

class constants
what static means

CS 314 Encapsulation - Implementing Classes 16

Default add method
where to add?

what if not enough space?
[].add(3) -> [3]

[3].add(5) -> [3, 5]

[3, 5].add(3) -> [3, 5, 3]

Testing, testing, testing!
a toString method would be useful

The IntList Class
instance variables

constructors
default

initial capacity
preconditions, exceptions, postconditions, assert

meaning of static

add method

get method

size method

CS 314 Encapsulation - Implementing Classes 17 CS 314 Encapsulation - Implementing Classes 18

toString method
return a Java String of list
empty list -> []

one element -> [12]

multiple elements -> [12, 0, 5, 4]

Clicker 3 - Timing Experiment
Add N elements to an initially empty IntList then call
toString. Time both events. How does the time to add
compare to the time to complete toString?

IntList list = new IntList();
for (int i = 0; i < N; i++)

list.add(i); // resize, cap * 2
String s = list.toString();

A. time to add << time for toString()

B. time to add < time for toString()

C. time to add ~= time for toString()

D. time to add > time for toString()

E. time to add >> time for toString()

The IntList Class
testing!!!

toString

Joshua Bloch

insert method (int pos, int value)

remove method(int pos)

insertAll method
(int pos, IntList other)

queens and kings of all the IntLists!!!

CS 314 Encapsulation - Implementing Classes 20

CS 314 Encapsulation - Implementing Classes 21

Clicker Question 4

What is output by the following code?
IntList list
list = new IntList(25);
System.out.println(list.size());

A. 25

B. 0

C. -1

D. unknown

E. No output due to runtime error.
CS 314 Encapsulation - Implementing Classes 22

get and size methods
get

access element from list
preconditions?

[3, 5, 2].get(0) returns 3
[3, 5, 2].get(1) returns 5

size
number of elements in the list
Do not confuse with the capacity of the internal
storage container
The array is not the list!

[4, 5, 2].size() returns 3

CS 314 Encapsulation - Implementing Classes 23

insert method
add at someplace besides the end

[3, 5].insert(1, 4) -> [3, 4, 5]

[3, 4, 5].insert(0, 4) -> [4, 3, 4, 5]

preconditions?

overload add?

chance for internal loose coupling

where what

CS 314 Encapsulation - Implementing Classes 24

Clicker 5
What is output by the following code?
IntList list = new IntList();
list.add(3);
list.insert(0, 4); // position, value
list.insert(1, 1);
list.add(5);
list.insert(2, 9);
System.out.println(list);

A. [4, 1, 3, 9, 5]
B. [3, 4, 1, 5, 9]
C. [4, 1, 9, 3, 5]
D. [3, 1, 4, 9, 5]
E. Something else

CS 314 Encapsulation - Implementing Classes 25

remove method
remove an element from the list based on
location

[3, 4, 5].remove(0) -> [4, 5]

[3, 5, 6, 1, 2].remove(2) ->

[3, 5, 1, 2]

preconditions?

return value?
accessor methods, mutator methods, and
mutator methods that return a value

CS 314 Encapsulation - Implementing Classes 26

Clicker Question 6
What is output by the following code?
IntList list = new IntList();
list.add(12);
list.add(15);
list.add(12);
list.add(17);
list.remove(1);
System.out.println(list);

A. [15, 17]
B. [12, 17]
C. [12, 0, 12, 17]
D. [12, 12, 17]
E. [15, 12, 17]

CS 314 Encapsulation - Implementing Classes 27

insertAll method
add all elements of one list to another
starting at a specified location

[5, 3, 7].insertAll(2, [2, 3]) ->

[5, 3, 2, 3, 7]

The parameter [2, 3] would be unchanged.

Working with other objects of the same type
this?

where is private private?

loose coupling vs. performance

queens and kings of all the IntLists!!!

Clicker 7 - InsertAll First Version
What is the order of the first version of
InsertAll? Assume both lists have N elements
and that the insert position is halfway through
the calling list.

A. O(1)

B. O(logN)

C. O(N0.5)

D. O(N)

E. O(N2)

CS 314 Encapsulation - Implementing Classes 28

Class Design and Implementation
Another Example

This example will not be covered
in class.

CS 314 Encapsulation - Implementing Classes 30

The Die Class
Consider a class used
to model a die

What is the interface? What
actions should a die be able
to perform?

The methods or behaviors can be broken up
into constructors, mutators, accessors

CS 314 Encapsulation - Implementing Classes 31

The Die Class Interface
Constructors (used in creation of objects)

default, single int parameter to specify the
number of sides, int and boolean to determine if
should roll

Mutators (change state of objects)
roll

Accessors (do not change state of objects)
getResult, getNumSides, toString

Public constants
DEFAULT_SIDES

CS 314 Encapsulation - Implementing Classes 32

Visibility Modifiers
All parts of a class have visibility modifiers

Java keywords
public, protected, private, (no modifier means package
access)
do not use these modifiers on local variables (syntax error)

public means that constructor, method, or field may
be accessed outside of the class.

part of the interface
constructors and methods are generally public

private means that part of the class is hidden and
inaccessible by code outside of the class

part of the implementation
data fields are generally private

CS 314 Encapsulation - Implementing Classes 33

The Die Class Implementation
Implementation is made up of constructor code,
method code, and private data members of the
class.
scope of data members / instance variables

private data members may be used in any of the
constructors or methods of a class

Implementation is hidden from users of a class and
can be changed without changing the interface or
affecting clients (other classes that use this class)

Example: Previous version of Die class,
DieVersion1.java

Once Die class completed can be used in anything
requiring a Die or situation requiring random
numbers between 1 and N

DieTester class. What does it do?
CS 314 Encapsulation - Implementing Classes 34

DieTester method

public static void main(String[] args) {
final int NUM_ROLLS = 50;
final int TEN_SIDED = 10;
Die d1 = new Die();
Die d2 = new Die();
Die d3 = new Die(TEN_SIDED);
final int MAX_ROLL = d1.getNumSides() +

d2.getNumSides() + d3.getNumSides();

for(int i = 0; i < NUM_ROLLS; i++)
{ d1.roll();

d2.roll();
System.out.println("d1: " + d1.getResult()

+ " d2: " + d2.getResult() + " Total: "
+ (d1.getResult() + d2.getResult()));

}

CS 314 Encapsulation - Implementing Classes 35

DieTester continued
int total = 0;
int numRolls = 0;
do
{ d1.roll();

d2.roll();
d3.roll();
total = d1.getResult() + d2.getResult()

+ d3.getResult();
numRolls++;

}
while(total != MAX_ROLL);

System.out.println("\n\nNumber of rolls to get "
+ MAX_ROLL + " was " + numRolls);

CS 314 Encapsulation - Implementing Classes 36

Correctness Sidetrack
When creating the public interface of a class give
careful thought and consideration to the contract
you are creating between yourself and users (other
programmers) of your class
Use preconditions to state what you assume to be
true before a method is called

caller of the method is responsible for making sure these
are true

Use postconditions to state what you guarantee to
be true after the method is done if the preconditions
are met

implementer of the method is responsible for making
sure these are true

CS 314 Encapsulation - Implementing Classes 37

Precondition and
Postcondition Example

/* pre: numSides > 1

post: getResult() = 1, getNumSides() = sides

*/

public Die(int numSides)

iMyNumSides = numSides;

iMyResult = 1;

assert getResult() == 1 && getNumSides() == numSides;

}

CS 314 Encapsulation - Implementing Classes 38

Object Behavior - Instantiation
Consider the DieTester class

Die d1 = new Die();
Die d2 = new Die();
Die d3 = new Die(10);

When the new operator is invoked control is
transferred to the Die class and the specified
constructor is executed, based on parameter matching

Space(memory) is set aside for the new object's fields

The memory address of the new object is passed
back and stored in the object variable (pointer)

After creating the object, methods may be called on it.

CS 314 Encapsulation - Implementing Classes 39

Creating Dice Objects
a Die object

iMySides iMyResult

6 1

a Die object

iMySides iMyResult

6 1

a Die object

iMySides iMyResult

10 1

d1

memory

address

d2

memory

address

d3

memory

address

DieTester class. Sees

interface of Die class
Die class.

Sees

implementation.

(of Die class.)

CS 314 Encapsulation - Implementing Classes 40

Objects
Every Die object created has its own
instance of the variables declared in the
class blueprint

private int iMySides;
private int iMyResult;

thus the term instance variable
the instance vars are part of the hidden
implementation and may be of any data type

unless they are public, which is almost always a
bad idea if you follow the tenets of information
hiding and encapsulation

CS 314 Encapsulation - Implementing Classes 41

Complex Objects
What if one of the instance variables is itself
an object?

add to the Die class
private String myName;

a Die object

iMySides iMyResult

6 1
d1

memory

address

myName

memory
address

a String object

implementation
details not shown

d1 can hold the memory address
of a Die object. The instance variable
myName inside a Die object can hold
the memory address of a String object

CS 314 Encapsulation - Implementing Classes 42

The Implicit Parameter
Consider this code from the Die class
public void roll()
{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;
}

Taken in isolation this code is rather confusing.

what is this iMyResult thing?
It's not a parameter or local variable

why does it exist?

it belongs to the Die object that called this method

if there are numerous Die objects in existence

Which one is used depends on which object called
the method.

CS 314 Encapsulation - Implementing Classes 43

The this Keyword
When a method is called it may be necessary
for the calling object to be able to refer to itself

most likely so it can pass itself somewhere as a
parameter

when an object calls a method an implicit
reference is assigned to the calling object
the name of this implicit reference is this

this is a reference to the current calling object
and may be used as an object variable (may not
declare it)

CS 314 Encapsulation - Implementing Classes 44

this Visually
// in some class other than Die
Die d3 = new Die();
d3.roll();

// in the Die class
public void roll()
{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;

/* OR

*/

}

a Die object

iMySides iMyResult

6 1

d3

memory

address

this

memory

address

CS 314 Encapsulation - Implementing Classes 45

An equals method

working with objects of the same type in a
class can be confusing

write an equals method for the Die class.
assume every Die has a myName instance
variable as well as iMyNumber and iMySides

CS 314 Encapsulation - Implementing Classes 46

A Possible Equals Method
public boolean equals(Object otherObject)
{ Die other = (Die)otherObject;

return iMySides == other.iMySides
&& iMyResult== other.iMyResult
&& myName.equals(other.myName);

}
Declared Type of Parameter is Object not Die
override (replace) the equals method instead of
overload (present an alternate version)

easier to create generic code

we will see the equals method is inherited from
the Object class
access to another object's private instance
variables?

CS 314 Encapsulation - Implementing Classes 47

Another equals Methods

public boolean equals(Object otherObject)
{ // dangerous! Not checking for null or type.

Die other = (Die)otherObject;
return this.iMySides == other.iMySides

&& this.iMyNumber == other.iMyNumber
&& this.myName.equals(other.myName);

}

Using the this keyword / reference to access the implicit parameters
instance variables is unnecessary.
If a method within the same class is called within a method, the
original calling object is still the calling object

CS 314 Encapsulation - Implementing Classes 48

A "Perfect" Equals Method
From Cay Horstmann's Core Java

public boolean equals(Object otherObject)
{ // check if objects identical

if(this == otherObject)
return true;

// must return false if explicit parameter null
if(otherObject == null)

return false;
// if objects not of same type they cannot be equal
if(getClass() != otherObject.getClass())

return false;
// we know otherObject is a non null Die
Die other = (Die)otherObject;
return iMySides == other.iMySides

&& iMyNumber == other.iMyNumber
&& myName.equals(other.myName);

}

CS 314 Encapsulation - Implementing Classes 49

the instanceof Operator
instanceof is a Java keyword.

part of a boolean statement
public boolean equals(Object otherObj)
{ if otherObj instanceof Die

{ //now go and cast
// rest of equals method

}
}

Should not use instanceof in equals methods.

instanceof has its uses but not in equals
because of the contract of the equals method

CS 314 Encapsulation - Implementing Classes 50

Class Variables and Class Methods

Sometimes every object of a class does not
need its own copy of a variable or constant
The keyword static is used to specify
class variables, constants, and methods
private static Random ourRandNumGen

= new Random();
public static final int DEFAULT_SIDES = 6;

The most prevalent use of static is for class
constants.

if the value can't be changed why should every
object have a copy of this non changing value

CS 314 Encapsulation - Implementing Classes 51

Class Variables and Constants
the Die class

DEFAULT_SIDES

6

ourRandNumGen

memory
address

a Random object

implementation
details not shown

All objects of type Die have
access to the class variables
and constants.

A public class variable or constant
may be referred to via the class name.

CS 314 Encapsulation - Implementing Classes 52

Syntax for Accessing Class Variables
public class UseDieStatic
{ public static void main(String[] args)

{ System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

// Any attempt to access Die.ourRandNumGen
// would generate a syntax error

Die d1 = new Die(10);

System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

System.out.println("d1.DEFAULT_SIDES "
+ d1.DEFAULT_SIDES);

// regardless of the number of Die objects in
// existence, there is only one copy of DEFAULT_SIDES
// in the Die class

} // end of main method
} // end of UseDieStatic class

CS 314 Encapsulation - Implementing Classes 53

Static Methods
static has a somewhat different
meaning when used in a method
declaration
static methods may not manipulate any
instance variables
in non static methods, some object
invokes the method
d3.roll();
the object that makes the method call is
an implicit parameter to the method

CS 314 Encapsulation - Implementing Classes 54

Static Methods Continued
Since there is no implicit object parameter
sent to the static method it does not have
access to a copy of any objects instance
variables

unless of course that object is sent as an
explicit parameter

Static methods are normally utility methods
or used to manipulate static variables
(class variables)
The Math and System classes are nothing
but static methods

CS 314 Encapsulation - Implementing Classes 55

static and this
Why does this work (added to Die class)

but this doesn't?
public class StaticThis
{

public static void main(String[] args)
{ System.out.println(this);
}

}

public class Die
{

public void outputSelf()
{ System.out.println(this);
}

}

