
1

Topic 5

Polymorphism

"“Inheritance is new code that reuses old code.

Polymorphism is old code that reuses new code.”

- OOP Koan

https://en.wikipedia.org/wiki/Koan

CS314 Polymorphism 2

Polymorphism
Another feature of OOP

“having many forms”

object variables in Java are polymorphic

object variables can refer to objects of their
declared type AND any objects that are
descendants of the declared type

Property p = new Property();

p = new Railroad(); // legal!

p = new Utility(); //legal!

p = new Street();

Object obj1; // = what?

CS314 Polymorphism 3

Data Type
object variables have:

– a declared type. Also called the static type.

– a dynamic type. What is the actual type of the
pointee at run time or when a particular
statement is executed.

Method calls are syntactically legal if the
method is in the declared type or any
ancestor of the declared type

The actual method that is executed at
runtime is based on the dynamic type

– dynamic dispatch

CS314 Polymorphism 4

Clicker Question 1
Consider the following class declarations:

public class BoardSpace

public class Property extends BoardSpace

public class Street extends Property

public class Railroad extends Property

Which of the following statements would cause a syntax
error? (Assume all classes have a zero argument
constructor.)

A. Object obj = new Railroad();

B. Street s = new BoardSpace();

C. BoardSpace b = new Street();

D. Railroad r = new Street();

E. More than one of these

CS314 Polymorphism 5

Method LookUp
To determine if a method is legal the compiler looks in the

class of the declared type
– if it finds it great, if not go to the super class and look there

– continue until the method is found, or the Object class is reached
and the method was never found. (Compile error)

To determine which method is actually executed the run
time system (abstractly):
– starts with the actual run time class of the object that is calling the

method

– search the class for that method

– if found, execute it, otherwise go to the super class and keep looking

– repeat until a version is found

 Is it possible the runtime system won’t find a method?

CS314 Polymorphism 6

Clicker Question 2
What is output by the
code to the right when
run?

A. !!live

B. !eggegg

C. !egglive

D. !!!

E. Something else

public class Animal {

public String bt(){ return "!"; }

}

public class Mammal extends Animal {

public String bt(){ return "live"; }

}

public class Platypus extends Mammal {

public String bt(){ return "egg";}

}

Animal a1 = new Animal();

Animal a2 = new Platypus();

Mammal m1 = new Platypus();

System.out.print(a1.bt());

System.out.print(a2.bt());

System.out.print(m1.bt());

Clicker Question 3

What is output by
the code to the
right when run?
Think carefully
about the dynamic
type.

A. MeowWoof

B. MeowEm

C. EmWoof

D. EmEm

E. Something else

public class Animal {

public void show() {

System.out.print(this.speak());

}

public String speak() { return "Em"; }

}

public class Dog extends Animal {

public String speak() { return "Woof"; }

}

public class Cat extends Animal {

public void show(int x) {

System.out.print("Meow");

}

}

Cat patches = new Cat();

Dog velvet = new Dog();

patches.show();

velvet.show();

CS314 Polymorphism 8

Why Bother?
Inheritance allows programs to model

relationships in the real world

– if the program follows the model it may be easier
to write

Inheritance allows code reuse

– complete programs faster (especially
large programs)

Polymorphism allows code reuse
in another way

Inheritance and polymorphism allow
programmers to create generic algorithms

CS314 Polymorphism 9

Genericity
One of the goals of OOP is the support of

code reuse to allow more efficient program
development

If a algorithm is essentially the same, but the
code would vary based on the data type
genericity allows only a single version of that
code to exist

in Java, there are 2 ways of doing this

1. polymorphism and the inheritance requirement

2. generics

CS314 Polymorphism 10

A Generic List Class

CS314 Polymorphism 11

Back to IntList

We may find IntList useful, but what if we

want a List of Strings? Rectangles?

Lists?

– What if I am not sure?

Are the List algorithms different if I am
storing Strings instead of ints?

How can we make a generic List class?

CS314 Polymorphism 12

Generic List Class
required changes

How does toString have to change?

– why?!?!

– A good example of why keyword this is

necessary from toString

What can a List hold now?

How many List classes do I need?

Clicker 4
After altering the data type of the elements to

Object in our list class, how many lines of

code in the toString method, originally from

the IntList class, need to be changed?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Polymorphism 13

CS314 Polymorphism 14

Writing an equals Method

How to check if two objects are equal?

if(objA == objA)

// does this work?

Why not this

public boolean equals(List other)

Because

public void foo(List a, Object b)

if(a.equals(b))

System.out.println(same)

– what if b is really a List?

CS314 Polymorphism 15

equals method

read the javadoc carefully!

Must handle null

Parameter must be Object

– otherwise overloading instead of overriding

– causes

must handle cases when parameter is not

same data type as calling object

– instanceof or getClass()

don't rely on toString and then String's

equals (efficiency)

CS314 Polymorphism 16

the createASet example

public Object[] createASet(Object[] items)

{ /*

pre: items != null, no elements

of items = null

post: return an array of Objects

that represents a set of the elements

in items. (all duplicates removed)

*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS314 Polymorphism 17

createASet examples
String[] sList = {"Texas", "texas", "Texas",

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println(sSet[i]);

Object[] list = {"Hi", 1, 4, 3.3, true,

new ArrayList(), "Hi", 3.3, 4};

Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println(set[i]);

