
1

Topic 5 - Polymorphism

new code that
reuses old code.
Polymorphism is
old code that

- OOP Koan

NO!!!!
CS314 Polymorphism 2

Polymorphism
Another feature of OOP

object variables in Java are polymorphic
object variables can refer to objects of their
declared type AND any objects that are
descendants of the declared type
Property p = new Property();
p = new Railroad(); // legal!
p = new Utility(); //legal!
p = new Street();
Object obj1; // = what?

CS314 Polymorphism 3

Data Type
object variables and objects:

declared type. Also called the static type.
dynamic type. What is the actual type of the

object the variable is referring to at run time or
when a particular statement is executed.

Method calls are syntactically legal if the
method is in the declared type or any
ancestor of the declared type
The actual method that is executed at
runtime is based on the dynamic type

dynamic dispatch

CS314 Polymorphism 4

Clicker Question 1
Consider the following class declarations:
public class BoardSpace
public class Property extends BoardSpace
public class Street extends Property
public class Railroad extends Property

Which of the following statements would cause a syntax
error? (Assume all classes have a zero argument
constructor.)

A. Object obj = new Railroad();
B. Street s = new BoardSpace();
C. BoardSpace b = new Street();
D. Railroad r = new Street();
E. More than one of these

CS314 Polymorphism 5

Method LookUp
To determine if a method is legal the compiler looks in the
class of the declared type

if it finds it great, if not go to the super class and look there
continue until the method is found, or the Object class is reached
and the method was never found. (Compile error)

To determine which method is actually executed the run
time system (abstractly):

starts with the actual run time class of the object that is calling the
method
search the class for that method
if found, execute it, otherwise go to the super class and keep looking
repeat until a version is found

CS314 Polymorphism 6

Clicker Question 2
What is output by the
code to the right when
run?

A. !!live
B. !eggegg
C. !egglive
D. !!!
E. Something else

public class Animal {
public String bt(){ return "!"; }

}

public class Mammal extends Animal {

public String bt(){ return "live"; }

}

public class Platypus extends Mammal {
public String bt(){ return "egg";}

}

Animal a1 = new Animal();
Animal a2 = new Platypus();

Mammal m1 = new Platypus();
System.out.print(a1.bt());
System.out.print(a2.bt());

System.out.print(m1.bt());

Clicker Question 3

What is output by
the code to the
right when run?
Think carefully
about the dynamic
type.

A. MeowWoof
B. MeowEm
C. EmWoof
D. EmEm
E. Something else

public class Animal {
public void show() {

System.out.print(this.speak());
}
public String speak() { return "Em"; }

}

public class Dog extends Animal {
public String speak() { return "Woof"; }

}

public class Cat extends Animal {
public void show(int x) {

System.out.print("Meow");
}

}

Cat patches = new Cat();
Dog velvet = new Dog();
patches.show();
velvet.show(); CS314 Polymorphism 8

Why Bother?
Inheritance allows programs to model
relationships in the real world

if the program follows the model it may be easier
to write

Inheritance allows code reuse
complete programs faster (especially
large programs)

Polymorphism allows code reuse
in another way
Inheritance and polymorphism allow
programmers to create generic algorithms

CS314 Polymorphism 9

Genericity
One of the goals of OOP is the support of
code reuse to allow more efficient program
development
If a algorithm is essentially the same, but the
code would vary based on the data type
genericity allows only a single version of that
code to exist
in Java, there are 2 ways of doing this
1. polymorphism and the inheritance requirement
2. generics

CS314 Polymorphism 10

A Generic List Class

CS314 Polymorphism 11

Back to IntList
We may find IntList useful, but what if we
want a List of Strings? Rectangles?
Lists?

What if I am not sure?

Are the List algorithms different if I am
storing Strings instead of ints?

How can we make a generic List class?

CS314 Polymorphism 12

Generic List Class
required changes
How does toString have to change?

why?!?!
A good example of why keyword this is
necessary from toString

What can a List hold now?

How many List classes do I need?

Clicker 4
After altering the data type of the elements to
Object in our list class, how many lines of
code in the toString method, originally from
the IntList class, need to be changed?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Polymorphism 13 CS314 Polymorphism 14

Writing an equals Method
How to check if two objects are equal?

if(objA == objA)

// does this work?

Why not this
public boolean equals(List other)

Because
public void foo(List a, Object b)

if(a.equals(b))
System.out.println(same)

what if b is really a List?

CS314 Polymorphism 15

equals method
read the javadoc carefully!
Must handle null

Parameter must be Object
otherwise overloading instead of overriding

causes

must handle cases when parameter is not
same data type as calling object
instanceof or getClass()

don't rely on toString and then String's
equals (efficiency)

CS314 Polymorphism 16

the createASet example

public Object[] createASet(Object[] items)
{ /*

pre: items != null, no elements
of items = null
post: return an array of Objects
that represents a set of the elements
in items. (all duplicates removed)
*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS314 Polymorphism 17

createASet examples
String[] sList = {"Texas", "texas", "Texas",

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println(sSet[i]);

Object[] list = {"Hi", 1, 4, 3.3, true,
new ArrayList(), "Hi", 3.3, 4};

Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println(set[i]);

