 Topic 9
Maps

"He's off the map!"
- Stan (Mark Ruffalo) Eternal Sunshine of the Spotless Mind

Data Structures

- More than arrays and lists
- Write a program to count the frequency of all the words in a file.
- Make a simplification: assume words are anything set off by whitespace

Performance using ArrayList

<table>
<thead>
<tr>
<th>Title</th>
<th>Size (kb)</th>
<th>Total Words</th>
<th>Distinct Words</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>small sample</td>
<td>0.6</td>
<td>89</td>
<td>25</td>
<td>0.001</td>
</tr>
<tr>
<td>2BR02B</td>
<td>34</td>
<td>5,638</td>
<td>1,975</td>
<td>0.051</td>
</tr>
<tr>
<td>Alice in Wonderland</td>
<td>120</td>
<td>29,460</td>
<td>6,017</td>
<td>0.741</td>
</tr>
<tr>
<td>Adventures of Sherlock Holmes</td>
<td>581</td>
<td>107,533</td>
<td>15,213</td>
<td>4.144</td>
</tr>
<tr>
<td>2008 CIA Factbook</td>
<td>10,030</td>
<td>1,330,100</td>
<td>74,042</td>
<td>173.000</td>
</tr>
</tbody>
</table>

Order?

- Express change in size as factor of previous file

<table>
<thead>
<tr>
<th>Title</th>
<th>Size</th>
<th>Total Words</th>
<th>Distinct Words</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>small sample</td>
<td>0.6</td>
<td>89</td>
<td>25</td>
<td>0.001</td>
</tr>
<tr>
<td>2BR02B</td>
<td>57x</td>
<td>63x</td>
<td>79x</td>
<td>51x</td>
</tr>
<tr>
<td>Alice in Wonderland</td>
<td>3.5x</td>
<td>5.2x</td>
<td>3.0x</td>
<td>14.5x</td>
</tr>
<tr>
<td>Adventures of Sherlock Holmes</td>
<td>4.8x</td>
<td>3.7x</td>
<td>2.5x</td>
<td>6.0x</td>
</tr>
<tr>
<td>2008 CIA Factbook</td>
<td>17x</td>
<td>12.3x</td>
<td>5x</td>
<td>42x</td>
</tr>
</tbody>
</table>

O(Total Words * Distinct Words) ??
Clicker Question

- Given 3 minutes for the 2008 CIA Factbook with 1,330,100 total words and 74,042 distinct words, how long for 1,000x total words and 100x distinct words?

 A. an hour
 B. a day
 C. a week
 D. a month
 E. half a year

Why So Slow

- Write a contains method for an array based list

 public boolean contains(E target) {

A Faster Way - Maps

- Also known as:
 - table, search table, dictionary, associative array, or associative container
- A data structure optimized for a very specific kind of search / access
- In a map we access by asking "give me the value associated with this key."
- Recall, in the ArrayList example we did not count the number of occurrences of each word

Keys and Values

- Dictionary Analogy:
 - The key in a dictionary is a word: foo
 - The value in a dictionary is the definition: First on the standard list of metasyntactic variables used in syntax examples
- A key and its associated value form a pair that is stored in a map
- To retrieve a value the key for that value must be supplied
 - A List can be viewed as a Map with integer keys
More on Keys and Values

- Keys must be unique, meaning a given key can only represent one value
 - but one value may be represented by multiple keys
 - like synonyms in the dictionary.
 Example:
 factor: \(n \) *See coefficient of \(X \)
 - factor is a key associated with the same value (definition) as the key \(coefficient \) of \(X \)

The Map Interface Continued

- \(\text{V get(Object key)} \)
 - Returns the value to which this map maps the specified key.
- \(\text{boolean isEmpty() } \)
 - Returns true if this map contains no key-value mappings.
- \(\text{V put(K key, V value)} \)
 - Associates the specified value with the specified key in this map

The Map\(<K, V>\) Interface in Java

- \(\text{void clear()} \)
 - Removes all mappings from this map (optional operation).
- \(\text{boolean containsKey(Object key)} \)
 - Returns true if this map contains a mapping for the specified key.
- \(\text{boolean containsValue(Object value)} \)
 - Returns true if this map maps one or more keys to the specified value.
- \(\text{Set<K> keySet()} \)
 - Returns a Set view of the keys contained in this map.

The Map Interface Continued

- \(\text{V remove(Object key)} \)
 - Removes the mapping for this key from this map if it is present
- \(\text{int size()} \)
 - Returns the number of key-value mappings in this map.
- \(\text{Collection<V> values()} \)
 - Returns a collection view of the values contained in this map.
Results with HashMap

<table>
<thead>
<tr>
<th>Title</th>
<th>Size (kb)</th>
<th>Total Words</th>
<th>Distinct Words</th>
<th>Time List</th>
<th>Time Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>small sample</td>
<td>0.6</td>
<td>89</td>
<td>25</td>
<td>0.001</td>
<td>0.0008</td>
</tr>
<tr>
<td>2BR02B</td>
<td>34</td>
<td>5,638</td>
<td>1,975</td>
<td>0.051</td>
<td>0.0140</td>
</tr>
<tr>
<td>Alice in Wonderland</td>
<td>120</td>
<td>29,460</td>
<td>6,017</td>
<td>0.741</td>
<td>0.0720</td>
</tr>
<tr>
<td>Adventures of Sherlock Holmes</td>
<td>581</td>
<td>107,533</td>
<td>15,213</td>
<td>4.144</td>
<td>0.2500</td>
</tr>
<tr>
<td>2008 CIA Factbook</td>
<td>10,030</td>
<td>1,330,100</td>
<td>74,042</td>
<td>173,000</td>
<td>4.0000</td>
</tr>
</tbody>
</table>

Order?

<table>
<thead>
<tr>
<th>Title</th>
<th>Size</th>
<th>Total Words</th>
<th>Distinct Words</th>
<th>Time List</th>
<th>Time Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>small sample</td>
<td>0.6</td>
<td>89</td>
<td>25</td>
<td>0.001</td>
<td>0.0008</td>
</tr>
<tr>
<td>2BR02B</td>
<td>57x</td>
<td>63x</td>
<td>79x</td>
<td>51x</td>
<td>18x</td>
</tr>
<tr>
<td>Alice in Wonderland</td>
<td>3.5x</td>
<td>5.2x</td>
<td>3.0x</td>
<td>14.5x</td>
<td>5x</td>
</tr>
<tr>
<td>Adventures of Sherlock Holmes</td>
<td>4.8x</td>
<td>3.7x</td>
<td>2.5x</td>
<td>5.6x</td>
<td>3.5x</td>
</tr>
<tr>
<td>2008 CIA Factbook</td>
<td>17x</td>
<td>12.3x</td>
<td>5x</td>
<td>42x</td>
<td>16x</td>
</tr>
</tbody>
</table>