
CS324e - Elements of Graphics 

and Visualization

Images



Images

• Treated as just another Graphic Primitive 

in Java 2D

• Image class in Java library

• Hold the contents of an actual image file

• OR can be drawn on like a panel

2



Image Formats

• Image files store the colors of each pixel

• Other information stored such as

– dimensions

– colors

• Popular image file formats:

– GIF, JPEG, PNG, BMP, TIFF, and many more
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Image Files

• Just numbers
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GIF

• Graphics Interchange Format

• 8 bits per pixel for color

• 256 colors

• file stores color palette or table

– chose from 224 colors

• One of the "colors" can be labeled 
transparent

– displayed as white and gray grid in most 
image editors

5



JPEG

• Joint Photographic Experts Group
– most common file format for digital cameras and other 

image cpature devices

• Multiple color spaces possible

• typically RGB model with 1 byte per pixel per channel
– 224 = 16,777,216 colors

• JPEG files are typically compressed to save space

• compression is lossy meaning the uncompressed 
version is not guaranteed to match the original
– some details lost

• No transparent pixels
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JPEG Compression "Artifacts"
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JPEG Compression "Artifacts"
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PNG

• Portable Network Graphics

• RGB color spaces

• Typically 8 bits per channel plus an 8 bit 

alpha channel

– transparent pixels possible

– other resolutions possible

• 32 bits per pixels

• uses lossless compression
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Images in Java

• Image: abstract class. super class to other 
image classes

• VolatileImage: designed for use with 
hardware acceleration and video 
memory storage

– not used in our course

• BufferedImage: represents a rectangular 
image in memory

– contains a color model and raster

– workhorse for our class
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Loading Images

• Old way:
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Loading Images

• new way:

• path to file must be known
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Loading Images from the Web

• Load from url on web:

• better method would be to have String as 

parameter to method
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Loading Images as Resources

• If creating a stand alone application 

images may be included as resources

• Java stand alone applications typically 

packaged as jar files

• images store in directory
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Displaying Images

• Images are similar to other graphic 

primitives (shapes, areas, paths)

• Multiple methods to display the images 

in Graphics and Graphics2D class

– Any transform that has been applied to the 

graphics object affects the image as well

• Highlight a few of them
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drawImage methods

• simplest version:

• ImageObserver is an object that is notified as 

image is constructed, changed, or drawn

• We will always send in null for observer
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drawImage Methods

• draw scaled version of image
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drawImage Methods

• draw image and supply different 

background color for transparent pixels 

(instead of what is already on the panel)
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drawImage Methods

• draw only part of an image

• d = destination, s = source
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drawImage Methods

• draw using a BufferedImageOp

• BufferedImageOp is another class that 

applies a filter to the image

– like image editing software

– multiple types of BufferedImageOps
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Demo

• Simple Image Op Program loads an image 

from a URL and then draws it 

• position only

• scaled

• translate and rotate graphics objects and 

draw image again

22



Altering Images

• digital images are just a bunch of 

numbers that represent the color at each 

pixel
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Image Processing

• Image processing and filtering is the 
result of mathematical operations on the 
image data, numbers representing colors 
at each pixel which has a location in the 
image

• BufferedImageOp

– Java interface with several implementations 
already completed

• We will also create our own custom 
filters
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BufferedImageOp

• Most important method for us is

BufferedImage filter(BufferedImage src, 

BufferedImage dest)
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Example Program

• Examples in ImageExamples program

• two menus

– one for buffered image ops

– one for our custom filters

• Button to load new image

• original image displayed on left, filtered 
on right

• rescales if images too big for display

– doesn’t scale images up (yet)

• Assignment 5, you will add menu options
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Built in Buffered Image Ops

• AffineTransformOp

• RescaleOp

• LookupOp

• ConvolveOp

• ColorConvertOp

27



AffineTransformOp

• A geometry filter

• Doesn't change color of image

• Applies an affine transform 

• Something of a convenience, don't have 

to apply transform to graphics object and 

undo

– or maybe we want to process images before 

drawing
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Affine Transforms

• Methods to apply an 

affine transformation

– affine transformations 

alter the coordinates of 

an object but preserve 

straight lines and 

proportions between 

points on a straight line
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Example - Reverse Image 

• Along horizontal access

• Create an AffineTransform

• Translate the width of the image in the x 

direction (or we get negative coordinates 

for image)

• set scale to (-1, 1)

• filter image
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Mirror Image Code

• AffineTransformOp.TYPE_BICUBIC is a 

constant for how to interpolate between 

if image size changes
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RescaleOp

• Implements BufferedImageOp interface

• Specify values

– either one for every channel

– or scale value for each channel

• and offsets

– offset added to each result after multiplied 
by scale

• final values clamped at 0 and 255 (for 
standard RGB)
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RescaleOp example

scale, offset, rendering hints

• example: given color (255, 255, 0)

• red = 255 * -1 + 255 = 0

• green = 255 * -1 + 255 = 0

• blue = 0 * -1 + 255 = 255

• result (0, 0, 255)

• What about (0, 0, 0) ? (255, 255, 255)
33



Sample RescaleOp

• Invert
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Rescale Op

• What will this rescale op do?

• f for float. 

– literals with a decimal are doubles

– RescaleOp constructor expects floats. not 

doubles
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RescaleOp Brighten
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RescaleOp Washout

• Scale of 3, offset of 30
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Rescale Op GUI

• Make a GUI with slides for scales and 

offsets

• Build RescaleOp on the fly as sliders 

adjusted 

– ChangeListener and stateChanged method 

instead of ActionListener and 

actionPerformed
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LookupOp

• Color changes based on a look up table

• Essentially an array

• original color is input and the index

• value in the table (array) is the resulting 

color

• for RGB can be a single array that all 

colors refer to 

• or 3 arrays, one for each channel
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Creating a LookupOp

• Must first create a LookupTable

– either a ByteLookupTable or a 

ShortLookupTable

– includes an offset that is subtracted from 

values before indexing into array
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LookupOp Simple Example

• Assume grayscale image with 10 shades

– colors are 0 to 9
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index 0 1 2 3 4 5 6 7 8 9

value 1 1 2 2 3 3 3 7 8 9

original image resulting image



LookupOp

• Randomize table
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Randomize Result
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Threshold LookupOp

• For all color values less than some 
threshold set the intensity to 0

• For all color values greater than or equal 
to the same threshold values set 
intensity to 255

• for threshold 70

• (140, 198, 65) -> (255, 255, 0)

• surprising result (Image reduced to 8 
colors)
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Threshold
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Bands LookupOp

• bands of intensities that are unchanged 

followed by bands of intensities that are 

reduced

• Bands are input intensity raised to the 

0.75 power and truncated
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index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 0 1 2 3 2 3 3 4 8 9 10 11 6 6 7 7



Bands Code
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Bands Result
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Band size = 8



Bands Result
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Bands Changed

• Band Size = 16, exponent = 1.25
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Bands Changed
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ConvolveOp

• A neighborhood filter

• The color of a pixel depends on the color of 

the pixels around it

• define a matrix called a kernel

• usually a square matrix with an odd number 

of rows (and thus columns)

• color of resulting pixel obtained by laying 

kernel over original matrix and multiplying 

kernel values by original colors
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Kernel and Convolve Example
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kernel

original image

pixel in result at location 

(1,1) = 1/9 * 0 + 1/9 * 0 + 1/9 * 0 

1/9 * 0 + 1/9 * 0 + 1/9 * 0 

1/9 * 0 + 1/9 * 5 + 1/9 * 5

= 10 / 9 = 1



Kernel and Convolve Example

• What does the kernel on the previous 

slide do?

• if components of kernel sum to less than 

1 image will be darkened

• if components of kernel sum to more 

than 1 image will be brightened
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Example Code

• kernel actually a 1d array

• values in kernelValues in row major order
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rows, columns



Result

• Border due to ConvolveOp not handling edge 
cells gracefully 56



Another Convolve Op
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kernel original image

Calculate Resulting image.

Border cells set to 0, results clamped between

0 an 9



Result

• What does this filter do?

• Will this brighten or darken an image?
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Edge Detection

• Vertical Lines
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to see lines more cleanly:

-apply kernel

-set all pixels above some 

threshold to white



Horizontal Line
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Horizontal Line

• Threshold at 125 total (sum of rgb after 

convolve op
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Convolve Op

• Emboss

• Will this brighten or darken the image?
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Emboss
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Making Our Own Filters

• Create our own abstract class to create 

filters

• Filthy Rich Clients shows how to create a 

new class that implements 

BufferedImageOp

• For assignment use our own FilterOp

class
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FilterOp

• abstract class

• some methods defined, some abstract

– abstract method declared, but no 

implementation

– class that extends FilterOp must implement 

the abstract methods or be abstract itself
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FilterOp

• methods:

• public BufferedImage filter(BufferedImage src)

// pull out part of color

• public static int getRed(int pixel)

• public static int getGreen(int pixel)

• public static int getBlue(int pixel)

// get all components

• public static int[] getRGB(int pixel)

• public static int makePixel(int red, int green, int blue) 
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FilterOp

• public abstract int filterOp(int pixel, 

BufferedImage src);

• abstract method

• no body or implementation

• class that extends FilterOp must implement 

the abstract methods or be abstract itself
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FilterOp

• Some filters will required overriding the 

filter method in the FilterOp class
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FilterOp Example

• Grayscale

• naïve:
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Grayscale

• Naïve approach: average together red, 

green, and blue to get a shade of gray

• problem: our eye is more sensitive to 

green and red than blue

• (0,255,0) should be "brighter" than 

(0,0,255)
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Grayscale

• Typical Grayscale conversion

• gray = Red * .3  +  Green * .59  +  Blue * .11

• color = (gray, gray, gray)
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Grayscale Side by Side
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Grayscale Side by Side

73



Grayscale Class

• What BufferedImageOp could we have 

used instead?
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HotMetal FilterOp

• Converts color at pixel to grayscale then 

uses a lookup table
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HotMetal
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