
CS324e - Elements of Graphics

and Visualization

Images

Images

• Treated as just another Graphic Primitive

in Java 2D

• Image class in Java library

• Hold the contents of an actual image file

• OR can be drawn on like a panel

2

Image Formats

• Image files store the colors of each pixel

• Other information stored such as

– dimensions

– colors

• Popular image file formats:

– GIF, JPEG, PNG, BMP, TIFF, and many more

3

Image Files

• Just numbers

4

GIF

• Graphics Interchange Format

• 8 bits per pixel for color

• 256 colors

• file stores color palette or table

– chose from 224 colors

• One of the "colors" can be labeled
transparent

– displayed as white and gray grid in most
image editors

5

JPEG

• Joint Photographic Experts Group
– most common file format for digital cameras and other

image cpature devices

• Multiple color spaces possible

• typically RGB model with 1 byte per pixel per channel
– 224 = 16,777,216 colors

• JPEG files are typically compressed to save space

• compression is lossy meaning the uncompressed
version is not guaranteed to match the original
– some details lost

• No transparent pixels

6

JPEG Compression "Artifacts"

7

JPEG Compression "Artifacts"

8

9

PNG

• Portable Network Graphics

• RGB color spaces

• Typically 8 bits per channel plus an 8 bit

alpha channel

– transparent pixels possible

– other resolutions possible

• 32 bits per pixels

• uses lossless compression

10

Images in Java

• Image: abstract class. super class to other
image classes

• VolatileImage: designed for use with
hardware acceleration and video
memory storage

– not used in our course

• BufferedImage: represents a rectangular
image in memory

– contains a color model and raster

– workhorse for our class
11

Loading Images

• Old way:

12

Loading Images

• new way:

• path to file must be known
13

Loading Images from the Web

• Load from url on web:

• better method would be to have String as

parameter to method

14

Loading Images as Resources

• If creating a stand alone application

images may be included as resources

• Java stand alone applications typically

packaged as jar files

• images store in directory

15

Displaying Images

• Images are similar to other graphic

primitives (shapes, areas, paths)

• Multiple methods to display the images

in Graphics and Graphics2D class

– Any transform that has been applied to the

graphics object affects the image as well

• Highlight a few of them

16

drawImage methods

• simplest version:

• ImageObserver is an object that is notified as

image is constructed, changed, or drawn

• We will always send in null for observer
17

drawImage Methods

• draw scaled version of image

18

drawImage Methods

• draw image and supply different

background color for transparent pixels

(instead of what is already on the panel)

19

drawImage Methods

• draw only part of an image

• d = destination, s = source

20

drawImage Methods

• draw using a BufferedImageOp

• BufferedImageOp is another class that

applies a filter to the image

– like image editing software

– multiple types of BufferedImageOps

21

Demo

• Simple Image Op Program loads an image

from a URL and then draws it

• position only

• scaled

• translate and rotate graphics objects and

draw image again

22

Altering Images

• digital images are just a bunch of

numbers that represent the color at each

pixel

23

Image Processing

• Image processing and filtering is the
result of mathematical operations on the
image data, numbers representing colors
at each pixel which has a location in the
image

• BufferedImageOp

– Java interface with several implementations
already completed

• We will also create our own custom
filters

24

BufferedImageOp

• Most important method for us is

BufferedImage filter(BufferedImage src,

BufferedImage dest)

25

Example Program

• Examples in ImageExamples program

• two menus

– one for buffered image ops

– one for our custom filters

• Button to load new image

• original image displayed on left, filtered
on right

• rescales if images too big for display

– doesn’t scale images up (yet)

• Assignment 5, you will add menu options
26

Built in Buffered Image Ops

• AffineTransformOp

• RescaleOp

• LookupOp

• ConvolveOp

• ColorConvertOp

27

AffineTransformOp

• A geometry filter

• Doesn't change color of image

• Applies an affine transform

• Something of a convenience, don't have

to apply transform to graphics object and

undo

– or maybe we want to process images before

drawing

28

Affine Transforms

• Methods to apply an

affine transformation

– affine transformations

alter the coordinates of

an object but preserve

straight lines and

proportions between

points on a straight line

29

Example - Reverse Image

• Along horizontal access

• Create an AffineTransform

• Translate the width of the image in the x

direction (or we get negative coordinates

for image)

• set scale to (-1, 1)

• filter image

30

Mirror Image Code

• AffineTransformOp.TYPE_BICUBIC is a

constant for how to interpolate between

if image size changes

31

RescaleOp

• Implements BufferedImageOp interface

• Specify values

– either one for every channel

– or scale value for each channel

• and offsets

– offset added to each result after multiplied
by scale

• final values clamped at 0 and 255 (for
standard RGB)

32

RescaleOp example

scale, offset, rendering hints

• example: given color (255, 255, 0)

• red = 255 * -1 + 255 = 0

• green = 255 * -1 + 255 = 0

• blue = 0 * -1 + 255 = 255

• result (0, 0, 255)

• What about (0, 0, 0) ? (255, 255, 255)
33

Sample RescaleOp

• Invert

34

Rescale Op

• What will this rescale op do?

• f for float.

– literals with a decimal are doubles

– RescaleOp constructor expects floats. not

doubles

35

RescaleOp Brighten

36

RescaleOp Washout

• Scale of 3, offset of 30

37

Rescale Op GUI

• Make a GUI with slides for scales and

offsets

• Build RescaleOp on the fly as sliders

adjusted

– ChangeListener and stateChanged method

instead of ActionListener and

actionPerformed

38

LookupOp

• Color changes based on a look up table

• Essentially an array

• original color is input and the index

• value in the table (array) is the resulting

color

• for RGB can be a single array that all

colors refer to

• or 3 arrays, one for each channel

39

Creating a LookupOp

• Must first create a LookupTable

– either a ByteLookupTable or a

ShortLookupTable

– includes an offset that is subtracted from

values before indexing into array

40

LookupOp Simple Example

• Assume grayscale image with 10 shades

– colors are 0 to 9

41

index 0 1 2 3 4 5 6 7 8 9

value 1 1 2 2 3 3 3 7 8 9

original image resulting image

LookupOp

• Randomize table

42

Randomize Result

43

Threshold LookupOp

• For all color values less than some
threshold set the intensity to 0

• For all color values greater than or equal
to the same threshold values set
intensity to 255

• for threshold 70

• (140, 198, 65) -> (255, 255, 0)

• surprising result (Image reduced to 8
colors)

44

Threshold

45

Bands LookupOp

• bands of intensities that are unchanged

followed by bands of intensities that are

reduced

• Bands are input intensity raised to the

0.75 power and truncated

46

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 0 1 2 3 2 3 3 4 8 9 10 11 6 6 7 7

Bands Code

47

Bands Result

48

Band size = 8

Bands Result

49

Bands Changed

• Band Size = 16, exponent = 1.25

50

Bands Changed

51

ConvolveOp

• A neighborhood filter

• The color of a pixel depends on the color of

the pixels around it

• define a matrix called a kernel

• usually a square matrix with an odd number

of rows (and thus columns)

• color of resulting pixel obtained by laying

kernel over original matrix and multiplying

kernel values by original colors

52

Kernel and Convolve Example

53

kernel

original image

pixel in result at location

(1,1) = 1/9 * 0 + 1/9 * 0 + 1/9 * 0

1/9 * 0 + 1/9 * 0 + 1/9 * 0

1/9 * 0 + 1/9 * 5 + 1/9 * 5

= 10 / 9 = 1

Kernel and Convolve Example

• What does the kernel on the previous

slide do?

• if components of kernel sum to less than

1 image will be darkened

• if components of kernel sum to more

than 1 image will be brightened

54

Example Code

• kernel actually a 1d array

• values in kernelValues in row major order

55

rows, columns

Result

• Border due to ConvolveOp not handling edge
cells gracefully 56

Another Convolve Op

57

kernel original image

Calculate Resulting image.

Border cells set to 0, results clamped between

0 an 9

Result

• What does this filter do?

• Will this brighten or darken an image?
58

Edge Detection

• Vertical Lines

59

to see lines more cleanly:

-apply kernel

-set all pixels above some

threshold to white

Horizontal Line

60

Horizontal Line

• Threshold at 125 total (sum of rgb after

convolve op

61

Convolve Op

• Emboss

• Will this brighten or darken the image?

62

Emboss

63

Making Our Own Filters

• Create our own abstract class to create

filters

• Filthy Rich Clients shows how to create a

new class that implements

BufferedImageOp

• For assignment use our own FilterOp

class

64

FilterOp

• abstract class

• some methods defined, some abstract

– abstract method declared, but no

implementation

– class that extends FilterOp must implement

the abstract methods or be abstract itself

65

FilterOp

• methods:

• public BufferedImage filter(BufferedImage src)

// pull out part of color

• public static int getRed(int pixel)

• public static int getGreen(int pixel)

• public static int getBlue(int pixel)

// get all components

• public static int[] getRGB(int pixel)

• public static int makePixel(int red, int green, int blue)

66

FilterOp

• public abstract int filterOp(int pixel,

BufferedImage src);

• abstract method

• no body or implementation

• class that extends FilterOp must implement

the abstract methods or be abstract itself

67

FilterOp

• Some filters will required overriding the

filter method in the FilterOp class

68

FilterOp Example

• Grayscale

• naïve:

69

Grayscale

• Naïve approach: average together red,

green, and blue to get a shade of gray

• problem: our eye is more sensitive to

green and red than blue

• (0,255,0) should be "brighter" than

(0,0,255)

70Wavelength (nm)

S
e
n
s
it
iv

it
y

Grayscale

• Typical Grayscale conversion

• gray = Red * .3 + Green * .59 + Blue * .11

• color = (gray, gray, gray)

71

Grayscale Side by Side

72

Grayscale Side by Side

73

Grayscale Class

• What BufferedImageOp could we have

used instead?

74

HotMetal FilterOp

• Converts color at pixel to grayscale then

uses a lookup table

75

HotMetal

76

