CS324e - Elements of Graphics
and Visualization

Intro to Animation

Animation

e definition: time-based alteration of graphical
objects through different states, locations,
sizes, and orientations

— FRC chapter 12

 alteration: change the way we are drawing
objects

— all the stuff from graphics basics

e time-based: define how objects change over
time and render objects based on this as
time goes by

|£:/ Animation Samples

Make the Ship Move

Frame

* Frame: one still drawing

* illusion of motion
achieved by drawing
multiple frames with
slight differences in how
graphical object is
rendered

— a series of still drawings
shown quickly

— like a flip book

o C o
| e] | & =
% B 7
| s [<A

e) s

{ &X &,

Time-Based vs. Frame-Based

We will do time based animation

— amount of movement or alteration based on
how much time has passed

In framed based animation the amount of
movement or alteration is defined per frame
(instead of per unit time)

Frame rate: number of frames drawn per
unit time, usually per second

Frame based relies on strictly controlling the
frame rate

Controlling Frame Rate

e Difficult based on

—speed of system (which varies between
systems your program will run on)

—complexity of what is being rendered

Series of Attempts at Animation

* Attempt 1:

public void paintComponent (Graphics g) {
super.paintComponent (qg) ;
Graphics2D g2 = (Graphics2D)g;
g2.drawImage (ufo, 20, 20, null);

g2.setColor (getBackground()) ;
g2.fillRect (20, 20, ufo.getWidth(), ufo.getHeight()):

g2.drawImage (ufo, getWidth() - ufo.getWidth() - 20, 20, null);

e What is result when run?
e Why?

Problems

‘eleportation != Animation

‘00 fast
Swing Buffering
Motion not time based

Second Attempt

// attempt at animation 2 - slow it down?
public void paintComponent (Graphics g) {
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D)g;

g2.drawlImage (ufo, 20, 20, null);
int x = 0;
for(int 1 = 0; 1 < 1000000000; i++)
for(int j = 0; j < 10000000; j++)
X =1* 7;

System.out.println(x);

g2.setColor (getBackground());
g2.fillRect (20, 20, ufo.getWidth(), ufo.getHeight());

g2.drawImage (ufo, getWidth() - ufo.getWidth() - 20, 20, null);

 What is wrong with this attempt?

Third Attempt

* Remember, swing uses a back buffer

* All the drawing done to the back buffer
(essentially a buffered image) and when
it is done the result is displayed

* All drawing from paintComponent
appears at once
—recall the random art assignment

—didn't see a few pixels at a time did we?

10

Third Attempt

//Animation Frame class
public void start() {

1

setVisible (true) ;

int x = 0;

for(int 1 = 0; 1 < 1000000000; i++)

for(int j = 0; j < 10000000; j++)

X =1%* 7;

System.out.println(x);

thePanel.changeShip () ;

repaint () ;

public void changeShip ()

}

{

xImg = getWidth() - ufo.getWidth() - 20;

// attempt 3 - pauses elsewhere
public void paintComponent (Graphics g) {

super.palntComponent (qg) ;
Graphics2D g2 = (Graphics2D)g;

g2.drawlImage (ufo, xImg, yImg, null);

11

Teleportation != Animation

 Must change the position of the ship a
little bit at a time

 Change the x position of the ship a little
bit at a time

e Eventually alter y as well

12

Fourth Attempt

// Animation Pa
public void mov
xImg = yImg

int endX =
for(int x =
repaint

// some

xImg +=

nel class

eShip () {

= prevXImg = prevY¥Img = 20;
getWidth() - ufo.getWidth() - 20;
xImg; X < endX; x++) {

()

time passes
1;

 What
happens?

// attempt 4 - pauses elsewhere

public void paintComponent (Graphics g) {
super.paintComponent (qg) ;
Graphics2D g2 = (Graphics2D)g;

g2.drawImage (ufo, xImg, yImg, null);

13

Too Fast

* Need to allow time to pass between calls
to repaint

e Kludge:
// Animation Panel class
public void moveShip () {
xImg = yImg = prevXImg = prevYImg = 20;
int endX = getWidth() - ufo.getwWidth() - 20;
for(int x = xImg; X < endX; X++) {
repaint () ;

int temp = 0;
for(int 1 = 0; 1 < 10000000; 1++)
for(int J = 0; 7 < 1000000; j++)
temp = 1 * j;
xImg += 1;

14

Movement Achieved

* The ship appears to move, but the
approach couldn't be worse

 Must not burn cycles to allow the
passage of time

* run on a different machine?

e Also, motion is frame based not time
based

—moving one pixel at a time

15

Time Based Motion

define a speed for the object / motion

and update x (and y) based on how much

time has passed

Xx=x0+t*(x1-x0)

X current position of ship

X0 start position of ship

X1 ending value of ship

t = fraction of time elapsed, from O to 1

16

Time Based Motion

// Animation Panel class

public void moveShip () {
xImg = yImg = prevXImg = prevYImg = 20;
int startX = xImg;
int endX = getWidth() - ufo.getWidth() - 20;
long animationDuration = 4500; // milliseconds
long startTime = getTime(); // getTime doesn't exist
long currentTime = startTime;
long endTime = startTime + animationDuration;
while (currentTime < endTime) {

long elapsedTime = currentTime - startTime;

float t = ((float) elapsedTime) / animationDuration;

xImg = (int) (startX + t * (endX - startX));
repaint () ;

// make some time pass

currentTime = getTime ()’

17

What's The Time

* Two ways of getting system time in Java

—the time the computer thinks it is
e System.currentTimeMiillis()
e System.nanoTime()

18

Aside - From Last Time

 The uncanny valley
—Masahiro Mori

+*

familiarity

uncanny valley :
.

moving =====-= pr—— |
still —— '.‘ healthy
bunraku puppet ¢ person
L
humanoid robot ‘
...... :
r
L
L]
.
: '
o . ']
stuffed animal } ..'
industrial robot ,.*):'/
-~ !
human likeness ;' 100%

corpse ': prosthetic hand

zombie

System.currentTimeMiillis()

the number of milliseconds (thousandths of
a second) that have passed since
January 1, 1970

arbitrary date and time know as the Unix
Epoch

useful for determining how much time has
passed between events in the program

measurements often limited to 10s of
milliseconds

20

System.nanoTime()

based on an arbitrary point in time
—don't assume Unix Epoch
—may even be in future

only used for elapsed time
smaller granularity
—billionths of a second

better resolution than
System.currentTimeMillis()

21

Measuring Frame Rate

private float getFPS() {
numkFrames++;
if (startTime == 0) {
startTime = System.nanoTime() ;

}

else {
long currentTime = System.nanoTime();
long delta = (currentTime - startTime);

// Average the fps every five seconds

if (delta > FPS WINDOW) {
fps = ((float) numFrames) / delta * BILLION;
numFrames = 0;
startTime = currentTime;
System.out.println (fps);

}

}

return fps;

Move Ship Back and Forth

* x coordinate (xImg) changed to double

// back and forth
public void moveShip () {
XImg = yImg = prevXImg = prevYImg = 20;
double startX = xImg;
int endX = getWidth() - ufo.getWidth() - 20;
long previousTime = System.nanoTime() ;
int speed = 100; // pixels per second
while (true) {
long currentTime = System.nanoTime() ;
long elapsedTime = currentTime - previousTime;
xImg = xImg + 1.0 * elapsedTime / BILLION * speed;

System.out.println(xImg + " " + previousTime

+ " " + currentTime + " " + elapsedTime);
previousTime = currentTime;
1if (xImg > endX || xImg < startX)

speed = speed * -1;
repaint () ;
int x = 0;

for(int 1 = 0;

for (int

X = 1

1 < 1000; 1i++)
0; J < 10000; j++)
5F;

*

Pausing

* The delay loop is a horrible kludge

* First option: pause the thread of
execution using Thread.sleep() method

 Thread making call is paused by system

* Doesn't do any work, but doesn't burn
CPU cycles either

e argument is milliseconds to sleep

24

Thread.sleep(int millis)

 call pause method from moveShip
e DELAY set to 30 milliseconds

private void pause () {

try {
Thread.sleep(DELAY) ;

}
catch (InterruptedException e)

System.out.println(e);

}
}

 Compare two versions of pausing

{

25

Problems With Sleeping

 Thread.sleep() causes the whole thread

(program) to stop

What if we have a lot of computations to
do?

Imagine the random art program

what if we wanted to "animate" the
drawing of the art by showing a few
hundred pixels at a time?

Does Thread.sleep help?

26

Timers

* To get repeated notifications that some
time has passed without putting the
whole thread to sleep

* "Timers allow the program to perform
repetitive operations at regular time
intervals in a way that allows other work
to happen asynchronously.”

—FRC

27

Timer Classes

* java.util.Timer

—general purpose timer class

* Creates a separate thread of execution
(your program forks)

* schedule TimerTasks with a run() method
that is called by the Timer

 fixed delay times (adjusts on fly) or fixed
rate times (doesn't adjust

28

javax.swing.Timer

 Create a time and it will make callbacks

* much like our action listeners for buttons
and mouse listeners

 Create a time and then create listeners
for when the timer goes off

* javax.swing.Timer specifically for Swing
applications / GUIs

—the callbacks are to the Swing Event
Dispatch Thread

29

Fixed Delay Timing

* Timer will adjust delay times to meet
desired wakeup call interval

* Events are coalesced:

—if it gets to far behind some timing events
are simply discarded

—repaint does the same thing

30

Comparison of Timers

* SwingTimerDemo creates two swing
timers

—one using fixed delay (default)
—one using fixed rate (events not coalesced)

31

Swing Fixed Delay

// Run a default fixed-delay timer

timer = new Timer (DELAY, new SwingTimerDemo ()) ;
startTime = prevTime = System.currentTimeMillis();
System.out.println("Fixed Delay Times");
timer.start () ;

* resu ItS: Fixed Delay Times

Elapsed time = 134
Elapsed time =270
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100
Elapsed time = 100 32

Swing Fixed Rate

// Run a timer with no coalescing to get fixed-rate behavior
timer = new Timer (DELAY, new SwingTimerDemo ());

startTime = prevTime = System.currentTimeMillis();
timer.setCoalesce (false);

System.out.println("\nFixed Rate Times");

timer.start () ;

®* resu It Fixed Rate Times

Elapsed time =0
Elapsed time = 100
Elapsed time = 30
Elapsed time = 200
Elapsed time = 30
Elapsed time = 30
Elapsed time = 30
Elapsed time = 30
Elapsed time =50
Elapsed time = 30

33

Using Timer in UFO Program

* Loop no longer in moveShip
e constructor for AnimationPanel

public AnimationPanel () {
this.setPreferredSize (new Dimension (WIDTH, HEIGHT)) ;
loadImage () ;
setBackground (Color.WHITE) ;

xImg = startX = 20;

yImg = 20;

endX = 800 - ufo.getWidth() - 20;
System.out.println(startX + " " + endX);

addTimer () ;

34

AnimationPanel With Timer

e Create timer

* ActionlListener is an annoynomoyus inner
class that calls update method on the
panel

private void addTimer () {
timer = new Timer (30, new ActionListener () {
public void actionPerformed (ActionEvent e) {
// System.out.println(e);
update () ;

});

35

AnimationPanel With Timer

» start method to begin animation

public void start() {
previousTime = System.nanoTime();
speed = 200;
timer.start();

)
* update method called when timer goes off

private void update() {
moveShip () ;
repalint () ;

36

AnimationPanel With Timer

* moveShip

* no loop

 must make many variables instance
variables - (what happens if speed local?)

//
//

// responding to a timer going off
public void moveShip () {
long currentTime = System.nanoTime() ;
long elapsedTime = currentTime - previousTime;
xImg = xImg + 1.0 * elapsedTime / BILLION * speed;

System.out.println(xImg + " " + previousTime
+ " " 4+ currentTime + " " + elapsedTime);
previousTime = currentTime;
if (xImg > endX || xImg < startX)

speed = speed * -1;

What's Next?

Clearly the logic for the ship does not
belong in the AnimationPanel class

Create a Ship class that contains logic for
moving ship

Move ship in something other than a
straight line

animate ship in another way (shrink, fade
out)

38

