CS324e - Elements of Graphics
and Visualization

Fractals and 3D Landscapes

Fractals

* A geometric figure in which smaller parts
share characteristics of the entire figure

—a detailed pattern that repeats itself
—contain self similar patterns

—appearance of details matches the overall
figure

—often described mathematically

Fractals

e Mandelbrot Set

* Burning Ship
Fractal

Sierpinski Triangle Fractal

e Described by Polish mathematician
Wactaw Sierpinski in 1915

e Algorithm

—Pick a side length and the lower left vertex
for an equilateral triangle

—|f the side length is less than some
minimum draw the triangle

—else draw three smaller Sierpinski Triangles

Sierpinski Triangle

“\
N

X +.25 * side Iengt,h;' \\
+sqrt(3)/4* N
v o 3)/ 9 . side length
side length Y
X,y ‘: ----------- -.--------------\

X +.5%side length, y

Sierpinski Triangle

* min length
= start length

r[gj Sierpinski Triangle

Sierpinski Triangle

* min length
= start length / 2

(7

erpinski Triangle

Sierpinski Triangle

| £ Sierpinski Triangle

* min length
= start length / 4

Sierpinski Triangle

| £ Sierpinski Triangle

* min length
= start length / 8

A
LNAN

AN

AN

(=] ® ==

Sierpinski Triangle

* min length [P =

= start length / 16

N
VY.V

Sierpinski Triangle

* min length e
= start length / 32

Sierpinski Triangle

* min length
= start length / 64

A A
#x'.t A‘MeA
A

Aextl A¢!¢A A¢!=A Atzed A¢’L¢A A‘Mgl L¢x¢& Aex¢b lctv‘=A L¢!¢A Le,l¢l A=!¢A l¢x¢l A‘xel A¢!¢A Atxet

Sierpinski Triangle

* min length
= start length / 128

|2 Sierpinski Triangle = ®

Close up - Self Similar

* Close up of bottom, right triangle from
minLength = startLength / 128

14

Implementation of Sierpinski

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint (RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE ANTIALIAS ON);
// g2.setStroke (new BasicStroke(2));
g2.setColor (Color.RED);
double x = (SIZE - START LENGTH) ¢ 23
double y = SIZE - X;
drawTriangles (g2, X, y, START LENGTH);

15

Implementation of Sierpinski

private
private
private
private

private

static final int SIZE = 600;

static final double START LENGTH = 500;

static final double Y3 FACTOR = Math.sqrt(3) F a4k
static final double Y3 FINAL = Math.sqrt(3) / 2;

double minLength = START LENGTH / 128;

private void drawTriangles (Graphics2D g2, double x1, double yl,
double currentLength) ({
if (currentLength <= minLength)
drawOneTriangle (g2, x1, yl, currentLength); Base CaS(

else {

double x2 = x1 + currentLength / 2;
double x3 = x1 + currentLength / 4;
double y3 = yl - Y3 FACTOR * currentLength; :
double newLength = currentLength / 2; Recursive
drawTriangles (g2, x1, yl, newLength); Case
drawTriangles (g2, x2, yl, newLength);
drawTriangles (g2, x3, y3, newLength);

LU

Implementation of Sierpinski

Base Case - Draw One Triangle

private void drawOneTriangle (Graphics2D g2, double x1,
double yl, double currentLength) ({

double x2 = x1 + currentLength;
double x3 = x1 + currentLength / 2;
double y3 = yl - Y3 FINAL * currentLength;
g2.drawLine ((int) x1, (int) y1, (int) x2, (int) y1);
g2.drawLine ((int) x1, (int) y1, (int) x3, (int) y3);
g2.drawLine ((int) x3, (int) y3, (int) x2, (int) y1);

17

Fractal Land

Example from KGPJ chapter 26
Create a mesh of quads
—example 256 x 256 tiles

allow the height of points in the quad to
vary from one to the next

split quads into one of 5 categories based

on height
—water, sand, grass, dry earth, stone
—appearance based on texture (image file)

18

Fractal Mesh

* Generate varied height of quads using a
"Diamond - Square" algorithm

e looking *
down on
mesh

* heights of
noints
A B C D

Generate Fractal Mesh - Diamond Step

dHeight = max height
- min height A

Height of Point E =

(Ah + Bh+ Ch + Dh) / 4
+ random(-dHeight/2,
+dHeight/2) E

average of 4 corner points
plus some random value
in range of max and min
allowed height

-——-——-——-——-——-——-—T-——-——-——-——-——-——-—-

* With height
of E set A

generate
height of 4
points

around E G

e Gh= (Ah+Eh+Eh
+Ch) /4 +
random(
-dHeight/2,

+dHeight/2) C

Square Step

F

———

21

Repeat Diamond Step

F
! B
1
1
1
1
J i K
____________ e e o o e e e s L e e e e e e e o e o s s o e o e e e o o o)
1
1
1
1
1
1
1
E |
IS R S S H
1 1
1 1
1 1
1 1
1 1
L i M |
____________ J_____________}._____________J.___________.
1
1
1
1
D

22

Completing Mesh

e Continuing alternating diamond and
square step until the size of the quad is 1.

* Each point of quad at a fixed x and z
coordinate, but the y has been generated
randomly

* Problem: if the height is allowed to vary
between the min and max height for
every point how different can points on a
quad be?

23

o
O
p -
_I
p -
g
v
Q
3
<

What is the Problem?

* By allowing the points that form a single
quad to vary anywhere in the range from
min to max height we get vast
differences

* Solution: after a pair of diamond - square
steps reduce the range of the random
value

* referred to as the flatness factor
* range = range / flatness

25

Flatness of 1.5

|£) 3D Fractal Landscape

Flatness of 2.5

| £ 3D Fractal Landscape

Flatness of 2.0

|£) 3D Fractal Landscape

Textures

* Shapes in Java3D may be wrapped in a
texture

* |n FractalLand the mesh is simply a
QuadArray

e Each texture is an image file

* Quad Array created and texture
coordinates generated for each quad

—how does image map to quad

29

Simple Textures

e Texture can also be applied to the
primitive shapes: box, cone, sphere,
cylinder

* From the interpolator example

 When creating box must add primFlag to
generate texture coordinates

private void addPillar() {
Appearance ap = getApp():
Box b = new Box (5, 10f, 7f, Box.GENERATE NORMALS
| Box.GENERATE TEXTURE COORDS , ap):;

Transform3D t3d = new Transform3D() ;
t3d.setTranslation (new Vector3f (5, 5, 10));

TransformGroup positionTG = new TransformGroup (t3d); 3

Creating Appearance

* Appearance for shape based on texture
not material

private Appearance getApp() {
Texture texture =
new TextureLoader ("images\\stone.jpg", null) .getTexture ()

Appearance result = new Appearance();

result.setTexture (texture) ;
return result;

31

Result

[£/ Interpolator Sample El jch

e texture
wrapped and
repeated as
necessary

 can lead to odd
seams, creases,
and stretching

Combining Texture and Material

e can combine material and texture to create

modulated material
private Appearance getApp () {

Appearance result = new Appearance();

Color3f card = new Color3f(.77f£, .12f, .24f);

Color3f black = new Color3f£(0, 0, 0O);

Color3f whiteish = new Color3f(.8f, .8f, .8f);

Material mat = new Material (card, black, card, whiteish, 64);
result.setMaterial (mat);

TextureAttributes ta = new TextureAttributes();
ta.setTextureMode (TextureAttributes.MODULATE) ;
result.setTextureAttributes (ta);

Texture texture =
new TextureLoader ("images\\stone.jpg", null) .getTexture():;

result.setTexture (texture);

return result;

Result

| £ Interpolator Sample

34

Controls

 Version of FractalLand shown had orbit
controls to allow movement of camera
anywhere in scene

* program includes method to add key
controls and keeps camera close to the
ground

—as if moving across the landscape

35

Result

Adding Fog

* Java3D includes ability to add fog
* LinearFog
* ExponentialFog

» density of fog as function of distance
from the camera

* fog has color and parameters to
determine density of fog

37

LinearFog

public class LinearFog
extends Fog

The LinearFog leaf node defines fog distance parameters for linear fog. LinearFog extends the Fog node by adding a pair of
distance vahes, in Z, at which the fog should start obscuring the scene and should maximally obscure the scene.

The front and back fog distances are defined in the local coordinate system of the node, but the actual fog equation will ideally
take place in eye coordinates.

The linear fog blending factor, £, is computed as follows:
f = (backDistance - z) / (backDistance - frontDistance)

where:

z is the distance from the viewpoint.
frontDistance is the distance at which fog starts obscuring objects.
backDistance is the distance at which fog totally obscurs objects.

private void addFog() {
// linear fog
// skyColour = new Color3f(0.17f, 0.07f, 0.45f);
LinearFog fogLinear = new LinearFog(skyColor, 5.0f, 40.0f);
fogLinear.setInfluencingBounds (bounds); // same as background
sceneBG.addChild (fogLinear) ;

} // end of addFoqg()

Result

