CS324e - Elements of Graphics
and Visualization

Java Intro / Review

Al Demo

Demo of Al expected behavior
Crack a substitution cipher

assumes only letters encrypted and
assumes upper and lower case
substitutions the same

initial key based on standard frequencies
allow changes to be made

Java Intro / Review

* |[nstead of going over syntax of language
we will write a program to solve a non
trivial problem and discuss the syntax

and semantics as we go

Zipf's Law

 Empirical observation - word frequency
* Named after George Zipf, a linguist

e Zipf's Law: The frequency of a word is
inversely proportional to its rank among
all words in the body of work

Zipf's Law Example

Assume the is the most frequent word in a
text and it occurs 10,000 times

2"d most frequent word expected to occur
5,000 times (if top ranked word's frequency
is as expected)

%2 * 10,000 = 5,000

3" most frequent word expected to occur
3,333 times

1/3 * 10,000 = 3,333

Expected number of occurrences of 100t
most frequent word?

Zipf's Law

e Out of a work with N distinct words, the

predicated probability of the word with
rank k is:

1/k*
Z:?:l (1/ n®) |

e 5is constant based on distribution.

f(k; s, N) =

* |n classic version of Zipf's law s =1

Zipf's Law

Assume 35,000 words

—N = 35,000
assumes=1

35,000t harmonic
number is about 11

23;1(1/"-8).

expected frequency of
10t word, k =10

Assume 1,000,000

words

1,000,000 /10 /11 = 9,090

Alternate Formula

* Probability of a given word being the
word with rank r

e R = number of distinct words

l

rin(1.78 R)

 Multiply by total number of words in
word to get expected number of words

P(r)=

Approach

* Read "words" from a file
* determine frequency of each word
* sort words by frequency

 Compare actual frequency to expected
frequency

—many ways to define expected frequency
—freq * rank = constant

—estimate constant, simple

—or use formulas

Java Program

e Eclipse IDE
* Create Project

* Create Class(es)
—procedural approach
—object based approach
—object oriented approach

Calculating Frequencies

Reading from a file

— Scanner class

— built in classes
—documentation

— exceptions

Try reading into native array

Try reading into ArrayList
—show some of "words"

better delimiter: "[*a-zA-Z']+"
—regular expressions

Calculate Frequencies

 Don't need to store multiple copies of
every word

e Just the number of times a given word
appears

 Another class / data structure is useful
— A Map, aka a Dictionary
—key, value pairs
—HashMap or TreeMap, order of keys

Using the Map

Read in words, count frequencies
—"wrapper" classes

Read in and print out some of the map

TreeMap
—ordered by keys

HashMap
—seemingly Random order

We want sorted by frequency
—why can't we use another map?

Sorting by Frequency

Create another class, WordPair
Have the class implement the
Comparable interface

—define compareTo method

— 2 objects / variables involved

Add to Arraylist, use Collections.sort
Now list start of ArrayList

Does Zipf's Law Hold?

e plot rank vs. frequency on a log - log
scale

—should be a near straight line

* recall freq * rank = constant

* Estimate constant
—simple average of first 1000 terms?
—simple average of all words with freq > 10?

—Simple linear regression, best fit line to log -
log plot

Viewing Results

 Compare predicted frequency and actual
frequency of top 100 words and % error

