CS324e - Elements of Graphics
and Visualization

Java GUIs - Event Handling

Event Driven Programming

* A"Programming Paradigm"

— others: object-oriented, functional, data -flow,
procedural, and more!

* Most early programs we write:
— get data
— perform computations
— output results

— CRUD programming (Create, Read, Update,
Delete)

* That's not how most programs we use
actually behave.

Event Driven Programming

facebook

4 Kelly Scott

FAVORITES
[:Z] News Feed

Q Messages
Events
& Find Friends

APPS
D&D: Heroes of Neverwinter
Apps and Games
Photos
IJ3 Music
D Notes
=5 Questions

&]] Links

(% Pokes 1

GROUPS

[Create Group...

MORE~

(=) Update Status Add Photo / Video == Ask Question

What's on your mind?

SORT ~
Olivia Scott
e 3’ Double Dave's deddes not to deliver our pizza and this become our
Ll dinner...#dormproblems — with Rebecca Martin.

@ Like - Comment - Share
) 5 people like this.

L) view all 4 comments

double daves fo life!
10 hours ago - Like

Olivia Scott hahaha yuhh, i love you mary, butim done with

l Roman Shoffner Hahaha, no bueno y'all.. Boycott is offidal.

about an hour ago - Like

GUIs and Events

Most programs sit there and wait for the
user to respond

Flow of control is based on user actions

User action is an event that the program
responds to

Different languages have different levels
of support for doing event driven
programming

Events Handling

{Button
° : . android:id="@+1d/buttonl”
ngh Ievel approaCh android:layout width="wrap content”
android:layout height="wrap content”

android:layout gravity="center"

— fixes set of events and

can attach code to the android:layout_margin="20dp"
. . android:onClick="showTop18"
event: andr0|d20nC||Ck android:text="Find Top 10"

android:textSize="30sp" /'>|
* Low level approach

— must write code to check
if events have occurred

and deal with them in
other code 13 2012

— Big old switch statement

Pick The Date for Top 10 List

Find Top 10

Java Event Handling

e Javais in between the high level and low
level approaches

e Built in GUI components in Swing:

— buttons, check box, combo box, lists,
menus, radio buttons, sliders, spinners, text
fields, password text fields, labels, trees,
color chooser, file chooser, separators,
progress bars, trees, tables, and more

http://docs.oracle.com/javase/tutorial/ui/features/components.html

Java Event Handling

* These built in components can be added
to top level containers such as frames
(menus) and panels

— Position is handled via a layout manager

—initially we will use default layout manager
FlowlLayout

e components added one after another in a line

 Components are drawn and generate
events

New Sample Program

Program with buttons

— background color changes
when button pressed

Main program -> frame ->
pane

Panel has an instance
variable currentColor

When paint component
called, background set to
currentColor

demo

| £/ Events Example

o @ |3

Add Buttons

* Add Buttons to the panel

class EventExamplePanel extends JPanel ({
private Color currentColor;

private static String[] buttonNames
= {"Red", "Green", "Blue"};

private JButton[] buttons;

public EventExamplePanel()ﬂ
currentColor = Color.ORANGE;
buttons = new JButton[buttonNames.length];

for(int 1 = 0; 1 < buttonNames.length; i++) {
buttons[1] = new JButton (buttonNames[i]);
add (buttons[1]);

Result of Adding Buttons

Notice order of buttons

What happens if
change order of
names?

What
more

What

nappens if add
puttons?

nappens if resize

Frame?

What

happens if

Button pressed?

|+ Events Example

Red

Green

Blue

===

10

Listeners

* When the buttons are pressed events are
being generated, but no one is listening

* |n other words we don't have any code
that responds to the events

e \WWe need to create listeners for each
button to listen for the event and
respond by changing background color

11

ActionListener
e LOTS of kinds of listeners

* All extend or implement the EventListener
interface

http://docs.oracle.com/javase/7/docs/api/java/util/EventListener.html

 We will create a class that implements the
ActionListener interface

e Method Detail
Interface ActionListener .
actionPerformed
All Superinterfaces: void actionPerformed (ActionEvent e)

EventListener)
Invoked when an action occurs.

All Known Subinterfaces:

12

Try a Separate Class

Create a ColorAction class
—instance vars

— constructor
—actionPerformed method

repaint -> request an entire component
be repainted. Don't call paintComponent

array of colors

build ColorAction and attach to each
button

13

ColorAction class

class ColorAction implements ActionListener ({
private EventExamplePanel panel;
private Color color;

public ColorAction (EventExamplePanel p, Color c) {
panel = p;
color = c;

}

public void actionPerformed (ActionEvent e) ({
System.out.println(e);
panel.setColor (color);
panel.repaint () ;

H

14

Change Panel Class

e create setColor method
e add array of colors
e change constructor

—call addActionListener on each button and
add an appropriate ColorAction

15

Changes to EventExamplePanel

private Color currentColor;

private static String[] buttonNames
— {"Redll" llGreen"’ llBluell};
private static Color[] colors = {Color.RED, Color.GREEN, Color.BLUE};

private JButton[] buttons;

public EventExamplePanel () {
currentColor = Color.ORANGE;
buttons = new JButton[buttonNames.length];

for(int 1 = 0; i < buttonNames.length; i++) {
buttons[1i] = new JButton (buttonNames[i]):;
buttons[1] .addActionListener (new ColorAction (this, colors([i])):
add (buttons[i]);

 DEmo -> Examine output of ActionPerformed
e Add more buttons and colors

16

