
CS371m - Mobile Computing

Persistence

Storing Data

• Multiple options for storing data
associated with apps

• Shared Preferences

• Internal Storage

–device memory

• External Storage

• SQLite Database

• Network Connection

2

Saving State

• We have already seen saving app state
into a Bundle on orientation changes or
when an app is killed to reclaim
resources but may be recreated later

3

SHARED PREFERENCES

4

http://developer.android.com/reference/android/content/SharedPreferences.html

Shared Preferences

• Private primitive data stored in key-value
pairs

• SharedPreferences Class

• Store and retrieve key-value pairs of data
– keys are Strings

– values are Strings, Sets of Strings, boolean,
float, int, or long

– So, somewhat limited options

• Not strictly for app preferences

5

SharedPreferences

• Several levels of preferences:
• getPreferences(int mode) for the Activity's

Preferences
– name based on Activity

• getSharedPreferences(String name, int
mode) for a an Application's shared
preferences
– multiple activities

• PreferenceManager.
getDefaultSharedPreferences() for system
wide preferences

6

Using SharedPreferences

• Obtain a SharedPreferences object for
application using these methods:

– getSharedPreferences(String name, int mode)

– getPreferences(int mode)

7

Writing to SharedPreferences

• After obtaining SharedPreferences
object:

– call edit() method on object to get a
SharedPreferences.Editor object

–place data by calling put methods on the
SharedPreferences.Editor object

– also possible to clear all data or remove a
particular key

8

Limited Data Types for
SharedPreferences

9

Writing to SharedPreferences

• When done writing data via the editor call
either apply() or commit()

• apply() is the simpler method
– used when only one process expected to write to

the preferences object

• commit() returns a boolean if write was
successful
– for when multiple process may be writing to

preferences

– blocking operation, so use sparingly or in thread
off of the UI thread to avoid ANR

10

Reading From Shared Preferences

• After obtaining SharedPreferences object
use various get methods to retrieve data

• Provide key (string) and default value if
key is not present

• get Boolean, Float, Int, Long, String,
StringSet

• getAll() returns Map<String, ?> with all of
the key/value pairs in the preferences

11

Shared Preferences File

• Stored as XML

12

Preference Activity

• An Activity framework to
allow user to select and set
preferences for your app

• tutorial 6 has an example
– difficulty, sound, color, victory

message

• Main Activity can start a
preference activity to allow
user to set preferences

• Current standard is to use a
PreferenceFragment instead

13

INTERNAL STORAGE

14

Internal Storage

• Private data stored on device memory
– not part of apk

• More like traditional file i/o
– in fact not that different from Java I/O

• by default files are private to your
application
– other apps cannot access directly

– recall content providers to share data with
other apps

• files removed when app is uninstalled

15

Internal Storage

• To create and write a private file to the
device internal storage:

• call openFileOutput(String name, int mode)
– method inhertied from Context
– file created if does not already exist
– returns FileOutputStream object

• regular Java class

• Modes include: MODE_APPEND,
MODE_PRIVATE
deprecated: MODE_WORLD_READABLE,
MODE_WORLD_WRITEABLE

16

Writing to Files

• FileOutputStream writes raw bytes

– arrays of bytes or single bytes

• Much easier to wrap the
FileOutputStream in PrintStream object

17

Reading from Files

• files saved to device

– data directory for app

• call openFileInput(String
name) method to obtain a
FileInputStream

• FileInputStream reads bytes

– for convenience may connect
to Scanner object or wrap in
a DataInputStream object

18

Static Files

• If you need or have a file with a lot of
data at compile time:

– create and save file in project res/raw/
directory

–open file using the openRawResource(int id)
method and pass the R.raw.id of file

– returns an InputStream to read from file

– cannot write to the file, part of the apk

19

Cache Files

• If need to cache data for application
instead of storing persistently:

– call getCacheDir() method to obtain a File
object that is a directory where you can
create and save temporary cache files

– files may be deleted by Android later if
space needed but you should clean them up
on your own

– recommended to keep under 1 MB

20

Internal Files - Other Useful Methods

• All of these are inherited from Context
• File getFileDir()

– get absolute path to filesystem directory where
app files are saved

• File getDir(String name, int mode)
– get and create if necessary a directory for files

• boolean deteleFile(String name)
– get rid of files, especially cache files

• String[] fileList()
– get an array of Strings with files associated

with Context (application)

21

EXTERNAL FILES

22

External Storage

• Public data stored on shared external storage

• may be removable SD (Secure Digital) card or
internal, non-removable storage

• files saved to external storage are
world-readable

• files may be unavailable when device mounts
external storage to another system

• files may be modified by user when they
enable USB mass storage for device

• request WRITE_EXTERNAL_STORAGE
permission in manifest 23

Checking Media Availability

• Call
Environment.getExternalStorageState()
method to determine if media available

–may be mounted to computer, missing,
read-only or in some other state that
prevents accessing

24

Checking Media State

• other states such as media being shared,
missing, and others

25

Accessing Files on External Storage

• call getExternalFilesDir(String type) to obtain a
directory (File object) to get directory to save
files

• type is String constant from Environment class

– DIRECTORY_ALARMS, DIRECTORY_DCIM (Digital
Camera IMages), DIRECTORY_DOWNLOADS,
DIRECTORY_MOVIES, DIRECTORY_MUSIC,
DIRECTORY_NOTIFICATIONS,
DIRECTORY_PICTURES, DIRECTORY_PODCASTS,
DIRECTORY_RINGTONES

26

External File Directory

• If not a media file then send null as
parameter to getExternalFilesDir()
method

• The DIRECTORY_<TYPE> constants allow
Android's Media Scanner to categorize
files in the system

• External files associated with application
are deleted when application uninstalled

27

External Data Shared Files

• If you want to save files to be shared with
other apps:

• save the files (audio, images, video, etc.)
to one of the public directories on the
external storage device

• Environment.getExternalStoragePublicDirectory(

String type) method returns a File object
which is a directory

• same types as getExternalFilesDir
method

28

Sharing Data

• Example:

– In the random art app

– add a button to save images

– if we want images to show up with other
"images" save to the DIRECTORY_PICTURES
directory

–now, other apps can view / use these
images via the media scanner

–NOT deleted when app deleted 29

Examining Shared Directories

30

Result

31

OBJECT SERIALIZATION

32

Clicker

• What is Object Serialization?

A. Giving a number to object for sorting

B. Converting object to a byte stream

C. Searching for objects

D. Converting Object to a file

E. Reading Objects from files

33

Object Serialization

• Taking a runtime data structure or object
and converting it to a form that can be
stored and / or transmitted

– converted to a byte stream

• store the object in between program runs

• transmit the object over a network

• store the data, not the methods / ops

–not the class definition

34

Object Serialization

35

runtime Object
ArrayList<Integer>

serialization

Secondary Storage /
Network

deserialization

runtime Object
ArrayList<Integer>

Serialization - Why?

• Could just do it by hand
–write out fields and structure to file

– read it back in

• Serialization provides an abstraction in
place of the "by hand" approach

• Much less code to write

• Example, Java has a specification for
serializing objects
– little effort on your part

36

Serialization in Java

• java.io.Serializable interface

• Here are the methods in the Serializable
interface:

• Really, that's it

• A TAG interface

• A way for a class to mark that is Serializable

37

Serialization in Java

38

Serialization in Java

• Data is serialized, not the class definition

• Program that deserializes must have the
class definition

• Use an ObjectOutputStream object to write
out Serializable objects
– serialize, deflate, flatten, dehydrate, marshal

• Later, use an ObjectInputStream to read in
Serializable objects
– deserialize, inflate, unflatten, hydrate,

unmarshal

39

ObjectOutputStream Example

• from CS307 / CS314

• Evil Hangman test cases

• play the game and test student results

• for each guess we want the patterns and
the number of words in each pattern

–Map<String, Integer>

40

ObjectOutputStream Example
Create tests

• LATER FOR EACH GUESS

• data methods (writeInt, …) for primitives
41

ObjectOutputStream writeObject

42

ObjectOutputStream Data Methods

• … and others

43

Output File - not human readable

44

ObjectInputStream

• When ready to run tests

• Make the guesses

45

Externalizable

• A sub-interface of Serializable

• Gives more control over the format of
the serialization to the class itself

• Two methods:

46

Externalizable

• ObjectOutputStream will test if object is
Serializable

– if not, throws an exception

• Then tests if Externalizable

– if so calls the writeExtenal method on the
object

– if not, uses default specification for
serialization

47

PARCEL AND PARCELABLE

48

Bundles Again

• What can you add to Bundles?

• Recall Bundles sent to onCreate when
restoring an Activity

• Bundles attached to Intents

• put

– Bundle, byte, char, CharSequence (includes
String), float, Parcelable, Serializable, short,
Size (width and height)

– arrays and ArrayLists of some of those types

49

Parcelable?

• Parcel:

• Android class for sending data via IPC

• Inter Process Communication

• Send an object (data) from one process
to another

• Generally faster (at run time) than
Serializable

– long term storage vs. short term storage

50

Parcelable

• interface

• have class implement interface

• implement writeToParcel method
–not just a Tag interface

–writes current state of object to Parcel

– void writeToParcel (Parcel dest, int flags)

– add a static field named CREATOR to class
• object that implements Parcelable.Creator

interface

51

Typical Implementation

52

OTHER STORAGE OPTIONS

53

SQLite Database

• Structured data stored in a private
database

• More on this next lecture

54

Network Connection

• Store data on web with your own
network server

• Use wireless or carrier network to store
and retrieve data on web based server

• classes from java.net and android.net

55

