CS378 - Mobile Computing

Sensing and Sensors
Sensors

• "I should have paid more attention in Physics 41"
• Most devices have built in sensors to measure and monitor
 – motion
 – orientation (aka position)
 – environmental conditions
• sensors deliver raw data to applications
Sensor Framework

- Determine which sensors are available on a device.
- Determine an individual sensor's capabilities, such as its maximum range, manufacturer, power requirements, and resolution.
- Acquire raw sensor data and define the minimum rate at which you acquire sensor data.
- Register and unregister sensor event listeners that monitor sensor changes.

USING SENSORS
Using Sensors - Basics

• Obtain the SensorManager object
• create a SensorEventListener for SensorEvents
 – logic that responds to sensor event
 – varying amounts of data from sensor depending on type of sensor
• Register the sensor listener with a Sensor via the SensorManager
Using Sensors

```java
private void createSensor() {
    sensorManager =
        (SensorManager) getSystemService(Context.SENSOR_SERVICE);

    showSensors();

    sensorManager.registerListener(sensorEventListener,
        sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION),
        SensorManager.SENSOR_DELAY_UI);
}
```

- `registerListener(SensorEventListener, Sensor, int rate)`
- `rate` is just a *hint*
- `SENSOR_DELAY_NORMAL`, `SENSOR_DELAY_UI`, `SENSOR_DELAY_GAME`, or `SENSOR_DELAY_FASTEST`, or time in microseconds (millionths of a second)
SensorEventListener

- Interface with two methods:
 - `void onAccuracyChanged (Sensor sensor, int accuracy)`
 - `void onSensorChanged (SensorEvent event)`
 - Sensor values have changed
 - this is the key method to override
 - don't hold onto the event
 - part of pool and the values may be altered soon
private void showSensors() {

 List<Sensor> sensors
 = sensorManager.getSensorList(Sensor.TYPE_ALL);

 Log.d(TAG, sensors.toString());

 for (Sensor s : sensors) {
 Log.d(TAG, s.getName() + " - minDelay: "
 + s.getMinDelay() + ", power: " + s.getPower());
 Log.d(TAG, "max range: " + s.getMaximumRange()
 + ", resolution: " + s.getResolution());
 }
}
Simple Sensor Example

• App that shows linear acceleration
• options to display current
• ... or maximum, disregarding direction
• Linear Layout
• TextViews for x, y, and z
• Buttons to switch between max or current and to reset max
Sensor Coordinate System

• For most motion sensors:
 • +x to the right
 • +y up
 • +z out of front face
 • relative to device
Accelerometer - Includes Gravity

• Sensor.
 \textit{TYPE_ACCELEROMETER}

• Device flat on table

• \(g \approx 9.81 \text{ m/s}^2 \)
Sensor Coordinate System

- App that displays max acceleration along each axis
- Hold phone straight up and down and move to ground

![Image showing app display with axes values: x Axis: 3.259, y Axis: 23.662, z Axis: 6.196]
Sensor Coordinate System

- Repeat but hold phone flat
- ... then sideways

![Sensor Test Screen 1](image1)

- x Axis: 5.149
- y Axis: 11.135
- z Axis: 20.017

![Sensor Test Screen 2](image2)

- x Axis: 20.802
- y Axis: 5.436
- z Axis: 8.131
Getting Sensor Data

```java
private void createSensor() {
    sensorManager =
        (SensorManager) getSystemService(Context.SENSOR_SERVICE);

    showSensors();

    sensorManager.registerListener(sensorEventListener,
        sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION),
        SensorManager.SENSOR_DELAY_UI);
}
```

- `registerListener`
 - `sensorEventListener`
 - `Sensor` - obtain via `SensorManager`
 - `rate of updates, a hint only, or microseconds`
 (not much effect)
- `returns true if successful`
private SensorEventListener sensorEventListener =
 new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 // Log.d(TAG, event + "");

 // accelerationValues[0].setText("" + event.values[0])
 if(displayCurrent)
 displayCurrent(event);
 else
 displayMax(event);

 // displayCurrentRotation(event);
 }
 }
private void displayMax(SensorEvent event) {
 for(int i = 0; i < maxVals.length; i++) {
 if(Math.abs(event.values[i]) > maxVals[i]) {
 maxVals[i] = (float) Math.abs(event.values[i]);
 float value = ((int) (maxVals[i] * 1000)) / 1000f;
 accelerationValues[i].setText("" + value);
 }
 }
}

Recall, max range of linear acceleration on dev phone is 19.613 + gravity = 29.423
- a baseball pitcher throwing a fastball reaches 350 m/s² or more (various "physics of baseball" articles)
Display Current

```java
private void displayCurrent(SensorEvent event) {
    if(!zeroingComplete)
        gatherZeroData(event);

    for(int i = 0; i < accelerationValues.length; i++) {
        float value = event.values[i];
        value = ((int) (value * 1000)) / 1000f;
        accelerationValues[i].setText("" + value);
    }
}
```

- Lots of jitter
- Attempt to zero out???
Types of Sensors - Dev Phone - Older

- accelerometer, linear acceleration, magnetic field, orientation, light, proximity, gyroscope, gravity
TYPES OF SENSORS
Sensor Capabilities - Dev Phones - Older

KR3DM 3-axis Accelerometer - minDelay: 20000, power: 0.23
max range: 19.6133, resolution: 0.019153614

AK8973 3-axis Magnetic field sensor - minDelay: 16667, power: 6.8
max range: 2000.0, resolution: 0.0625

GP2A Light sensor - minDelay: 0, power: 0.75
max range: 3626657.8, resolution: 1.0

GP2A Proximity sensor - minDelay: 0, power: 0.75
max range: 5.0, resolution: 5.0

K3G Gyroscope sensor - minDelay: 1190, power: 6.1
max range: 34.906586, resolution: 0.0012217305

Rotation Vector Sensor - minDelay: 20000, power: 13.13
max range: 1.0, resolution: 5.9604645E-8

Gravity Sensor - minDelay: 20000, power: 13.13
max range: 19.6133, resolution: 0.019153614

Linear Acceleration Sensor - minDelay: 20000, power: 13.13
max range: 19.6133, resolution: 0.019153614

Orientation Sensor - minDelay: 20000, power: 13.13
max range: 360.0, resolution: 0.00390625

Corrected Gyroscope Sensor - minDelay: 1190, power: 13.13
max range: 34.906586, resolution: 0.0012217305
Types of Sensors - Dev Phone - Newer

SensorTest	GP2A Light sensor Sharp
SensorTest	GP2A Proximity sensor Sharp
SensorTest	BMP180 Pressure sensor Bosch
SensorTest	MPL Gyroscope Invensense
SensorTest	MPL Accelerometer Invensense
SensorTest	MPL Magnetic Field Invensense
SensorTest	MPL Orientation Invensense
SensorTest	MPL Rotation Vector Invensense
SensorTest	MPL Linear Acceleration Invensense
SensorTest	MPL Gravity Invensense
SensorTest	Rotation Vector Sensor Google Inc.
SensorTest	Gravity Sensor Google Inc.
SensorTest	Linear Acceleration Sensor Google Inc.
SensorTest	Orientation Sensor Google Inc.
SensorTest	Corrected Gyroscope Sensor Google Inc.
Sensor Capabilities - Dev Phone - Newer

GP2A Light sensor - minDelay: 0, power: 0.75
max range: 646239.5, resolution: 1.0
GP2A Proximity sensor - minDelay: 0, power: 0.75
max range: 5.0, resolution: 5.0
BMP180 Pressure sensor - minDelay: 20000, power: 0.67
max range: 1100.0, resolution: 0.01
MPL Gyroscope - minDelay: 10000, power: 6.1
max range: 34.90656, resolution: 0.57246757
MPL Accelerometer - minDelay: 10000, power: 0.139
max range: 19.6133, resolution: 0.038344003
MPL Magnetic Field - minDelay: 10000, power: 4.0
max range: 8001.0, resolution: 0.012
MPL Orientation - minDelay: 10000, power: 10.239
max range: 360.0, resolution: 1.0E-5
MPL Rotation Vector - minDelay: 10000, power: 10.239
max range: 1.0, resolution: 1.0E-5
MPL Linear Acceleration - minDelay: 10000, power: 0.5
max range: 10240.0, resolution: 1.0
MPL Gravity - minDelay: 10000, power: 10.239
max range: 19.6133, resolution: 0.038344003
Rotation Vector Sensor - minDelay: 10000, power: 10.239
max range: 1.0, resolution: 5.9604645E-8
Gravity Sensor - minDelay: 10000, power: 10.239
max range: 19.6133, resolution: 0.038344003
Linear Acceleration Sensor - minDelay: 10000, power: 10.239
max range: 19.6133, resolution: 0.038344003
Orientation Sensor - minDelay: 10000, power: 10.239
max range: 360.0, resolution: 0.00390625
Corrected Gyroscope Sensor - minDelay: 10000, power: 10.239
max range: 34.90656, resolution: 0.57246757
Types of Sensors

• Three main classes of sensors:
 • motion (acceleration and rotational forces)
 – accelerometers, gravity sensors, gyroscopes, and rotational vector sensors
 • environmental (ambient air temperature and pressure, illumination, and humidity)
 – barometers, photometers, and thermometers.
 • position (physical position of a device)
 – orientation sensors and magnetometers
Types of Sensors

• Hardware sensors
 – built into the device

• Software sensors
 – takes data from a hardware sensors and manipulates it
 – from our perspective acts like a hardware sensor
Types of Sensors

• TYPE_ACCELEROMETER
 – hardware
 – acceleration force in m/s2
 – x, y, z axis
 – includes gravity
Types of Sensors

• TYPE_AMBIENT_TEMPERATURE
 – hardware
 – "room" temperature in degrees Celsius
 – no such sensor on dev phones

• TYPE_GRAVITY
 – software or hardware
 – just gravity
 – if phone at rest same as TYPE_ACCELEROMETER
Types of Sensors

• TYPE_GYROSCOPE
 – hardware
 – measure device's rate of rotation in radians / second around 3 axis

• TYPE_LIGHT
 – hardware
 – light level in lx,
 – lux is SI measure illuminance in luminous flux per unit area
Types of Sensors

• **TYPE_LINEAR_ACCELERATION**
 - software or hardware
 - measure acceleration force applied to device in three axes excluding the force of gravity

• **TYPE_MAGNETICFIELD**
 - hardware
 - ambient geomagnetic field in all three axes
 - uT micro Teslas
Types of Sensors

• TYPE_ORIENTATION [deprecated]
 – software
 – measure of degrees of rotation a device makes around all three axes

• TYPE_PRESSURE
 – hardware
 – ambient air pressure in hPa or mbar
 – force per unit area
 – 1 Pascal = 1 Newton per square meter
 – hecto Pascals (100 Pascals)
 – milli bar - 1 mbar = 1hecto Pascal
Types of Sensors

• TYPE_PROXIMITY
 – hardware
 – proximity of an object in cm relative to the view screen of a device
 – most just binary (see range, resolution)
 – typically used to determine if handset is being held to person's ear during a call

• TYPE_RELATIVE_HUMIDITY
 – ambient humidity in percent (0 to 100)
Types of Sensors

• **TYPE_ROTATION_VECTOR (ABSOLUTE)**
 – hardware or software
 – orientation of device, three elements of the device's rotation vector

• **TYPE_TEMPERATURE**
 – hardware
 – temperature of the device in degrees Celsius
Availability of Sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Android 4.0 (API Level 14)</th>
<th>Android 2.3 (API Level 9)</th>
<th>Android 2.2 (API Level 8)</th>
<th>Android 1.5 (API Level 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE_ACCELEROMETER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TYPE_AMBIENT_TEMPERATURE</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>TYPE_GRAVITY</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>TYPE_GYROSCOPE</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a¹</td>
<td>n/a¹</td>
</tr>
<tr>
<td>TYPE_LIGHT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TYPE_LINEAR_ACCELERATION</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>TYPE_MAGNETIC_FIELD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TYPE_ORIENTATION</td>
<td>Yes²</td>
<td>Yes²</td>
<td>Yes²</td>
<td>Yes</td>
</tr>
<tr>
<td>TYPE_PRESSURE</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a¹</td>
<td>n/a¹</td>
</tr>
<tr>
<td>TYPE_PROXIMITY</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TYPE_RELATIVE_HUMIDITY</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>TYPE_ROTATION_VECTOR</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>TYPE_TEMPERATURE</td>
<td>Yes²</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Sensor Capabilities

• Various methods in Sensor class to get capabilities of Sensor
• minDelay (in microseconds)
• power consumption in mA (microAmps)
• maxRange
• resolution
Linear Acceleration

- At rest of table
- Recall
- Units are m/s²

SensorTest

x Axis
-0.017

y Axis
-0.084

z Axis
-0.034
Zeroing out

• Take average of first multiple (several hundred) events and average
 – shorter time = more error

• Potential error
 – should be 0 at rest

SensorTest	i: 0, zerovalue: 7.4665865E-4
SensorTest	i: 1, zerovalue: -0.003574672
SensorTest	i: 2, zerovalue: -0.02909316

| i: 0, zerovalue: -0.0035472375 |
| i: 1, zerovalue: -0.0018564985 |
| i: 2, zerovalue: -0.022586245 |
Rate of Events

• 1000 events
• SensorManager.SENSOR_DELAY_UI
 – times in seconds: 21, 21, 21
 – 21 seconds / 1000 events
• SensorManager.SENSOR_DELAY_FASTEST
 – times in seconds: 21, 21, 21
• Recall delay of 20,000 micro seconds
• \(2 \times 10^4 \times 1 \times 10^3 = 2 \times 10^7 = 20\) seconds