
CS371m - Mobile Computing

Services and Broadcast Receivers



Clicker

• Is it possible for your app to accomplish 
work when the forefront Activity is not
one from your app?

A. Yes

B. No

2



Services

• One of the four primary application 
components:

– activities

– content providers

– services

–broadcast receivers

3



Services - Purpose

• Application component that 
performs long-running 
operations in background 
with no UI

• application starts service and 
service continues to run even 
if original application ended 
or user moves to another 
application

• a way to run code when one 
of app's activity is not the 
forefront activity 4



Service - Examples

• Download app from store
– leave store app, but download continues

– any kind of download of upload via network

• Play music even when music player dismissed 
(if user desires)

• maintain connection in chat app when phone 
call received

• periodically poll website for updates / changes
– the grade checker

– may lead to notification

5



Clicker

• Will a class in your app that extends the 
Service class have an xml layout file?

A. Yes

B. No

6



Clicker

• Do services need to be declared in the 
app manifest file like activities?

A. Yes

B. No

7



Service Basics

• No User Interface Components

• Belongs to an app

–must be declared in the app manifest

• May be running even if app is not at 
forefront, interacting with the user

• May be private (usable only by the app 
they belong to) or public (usable by apps 
other than yours)

8



Starting Services

• Two ways to start services:

1. Manually by an app using a call to the API
- recall the startActivity method 
for Activities

2. Another activity tries to connect (bind) to 
a service via inter process communication
- may be an app other than yours if your 
make your service public

9



Stopping Services

• Services will run until shut down:

1. by themselves when task completed or 
possibly by owning app
stopSelf

2. By the owning app via a call to 
stopService

3. If Android needs the RAM the service is 
using
- just like it does for activities deep in the 
activity stack

10



Types Services - Started or Bound

• Started: 
– application component, such as an Activity, starts 

the service with the method call startService()

– once started service can run in background 
indefinitely
• clean up after yourself

– generally services do not return a result (see 
bound service)
• can send a local broadcast when done if necessary to 

notify Activity or other Service

– service should stop itself when done

• Most services in our projects are started 11



Forms of Services - Started or Bound

• Bound
– application component binds itself to existing 

service via the bindService() method

– bound service provides client-server interface 
that allows application component to interact 
with service

– interact with service, send requests, get result 
via IPC (inter process communication)

– service runs as long as one or more 
applications bound to it

– destroyed when no applications bound

12



Forms of Services

• Service can be started and later bound to 
other applications

– so, both started and bound

• private service (manifest) cannot be 
bound by other applications

13



Communicating with Services

• Two ways:

• Commands
–no lasting connection to service

–example: start service, end service

• Binding
– creates communication channel between 

the service and other component

–other component typically an activity or 
perhaps another service

14



Service or Thread

• Past examples, kept UI thread responsive 
with other threads of execution, 
especially AsyncTask 

• Should services be used for this?

• Service for actions that need to take 
place even if user not interacting with UI 
or has closed application

• Example, do complex rendering of image 
to display to user. 
–Not a job for a service

15



Service Setup

• Must declare Services in manifest

– just like activities

–otherwise when Service started, app will 
crash

16

No intent filter
for Service 
makes it private.



Creating a Service Class
• create subclass of Android Service class 

or one of its existing subclasses
– commonly IntentService

• override callback methods that handle 
important aspects of service lifecycle

• most important of these are:
– onStartCommand

– onBind (bound services)

– onCreate

– onDestroy

– stopSelf

17

http://developer.android.com/reference/android/app/IntentService.html


Service Lifecycle

• If component starts service with 
startService method (leads to call to 
onStartCommand) service runs until it 
calls stopSelf or another activity calls 
stopService

• if component calls bindService
(onStartCommand not called) service 
runs as long as at least one component 
bound to it

18



Service Lifecycle

19



Service Responsiveness

• Services run on the main thread of hosting 
process

• By default a Service does not create a 
separate thread of execution

• If plan to do intensive CPU ops or blocking 
ops within Service, must still create a 
separate thread of execution to avoid ANRs

• IntentService (subclass of Service) uses a 
worker thread to handle start requests

20



APP EXAMPLE THAT 
USES A SERVICE

21



Service App Example

• From Roger Wallace
– Spring 2011 

–wanted an app that would
respond to texts (SMS) received 
when driving and respond with 
a message ("Driving - Get 
back to you soon.")

– Initial version simply auto responds to all texts

–how to change it so it responds only when 
driving?

22



Interesting Sidetrack - Disallowed?

• Google Play Developer Policy

23

https://play.google.com/about/spam.html#spam
https://play.google.com/about/spam.html#spam
https://play.google.com/store/apps/details?id=com.client.DrivingSMSAnsweringMachine&hl=en
https://play.google.com/store/apps/details?id=com.client.DrivingSMSAnsweringMachine&hl=en


Example Service Application

• From The Android 
Developer's Cookbook

• SMSResponder
Application

• Response stored in 
shared preferences

• App allows changes to 
message, start auto SMS 
responses and stop auto 
SMS respones

24



Using SMS

• Permission in manifest file to send and / 
or receive SMS messages

25



SMSResponder Basic App

• onCreate

• set up layout

26



SMSResponder onResume

27



Change Auto Response Message

28



Starting Service

29



Check if Service Already Running

30

Alternative: Use public, static variable or method in Service 
class to indicate if running or not.



Service Running

31

Service is running



Simulating Texts

• Calls and texts can be simulated between 
emulators

• Start two emulators

• Use messaging app to send text 

• Phone number is simply the emulator port 
number (visible at top of the emulator or in 
eclipse)

32



Dual Emulators

33



Emulator Texts

34



Testing Service

35



Creating a Service

• Extend the Service class
– adapter class exists, IntentService handles a lot 

of the details

• override onStartCommand
– return an int describing what system should do 

for starting service

– START_NOT_STICKY, if system kills service don't 
restart

– START_STICKY, if system kills service then 
recreate, but does not redeliver intent

– START_REDELIVER_INTENT, if system kills 
service then recreate and redeliver last intent 36



SMSResponser

37



SMS Responder

38



SMS Responder - onCreate

39



BROADCAST RECEIVERS

40



Broadcast Receivers

• The third of four application components
– activities, services, broadcast receivers, 

content providers / receivers

• "A broadcast receiver is a component that 
responds to system-wide broadcast 
announcements."

• Android system sends multiple kinds of 
broadcasts
– screen turned off, battery low, picture 

captured, SMS received, SMS sent, and more

41



Broadcasts

• Another use of intents

• Intents used to start activities and services

– startActivity()

– startActivityForResult()

– startService()

– bindService()

• Also used to deliver information from system 
and applications to other applications 

• via Broadcast Intents

42



BroadcastReceivers

• What broadcasts are available?

• Check the Intent class

• http://developer.android.com/reference/and
roid/content/Intent.html

– search for "Broadcast Action"

• Also look in android-sdk\platforms\<number>\data\

broadcast_actions.txt

43

http://developer.android.com/reference/android/content/Intent.html


Broadcasts Listed in Intent class

44

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html


Clicker

• Can you app send out any Broadcasts it 
wants?

A. yes

B. no

45



Broadcasts

• from 
broadcast_
actions.txt in 
sdk files

• platforms->
<api level>->
data\

46



Broadcast Intents

• You can create your own Broadcasts Intents

• Many Intents listed in the Intent class are 
protected intents that may only be send by 
the system

47



Protected Broadcasts

• Try it anyway??

48

03-23 13:16:50.222 388-397/? 
W/ActivityManager: Permission 
Denial: not allowed to send broadcast 
android.intent.action.TIMEZONE_CHA
NGED from pid=3470, uid=10140



Permissions Again

• Recall ...

• Android 6.0, Marshmallow, API level 23 
introduced changes to permissions

• Dangerous vs. Normal permissions

• Necessary to request Dangerous 
Permissions at runtime, not install time

• Listening for SMS send and receive 
Broadcasts is a Dangerous Permission

49



Receiving Broadcasts

• Activities and Services can listen for 
Broadcasts

• 4 steps

1. subclass BroadcastRecevier (
implement onReceive method)

2. create IntentFilter object to specify the 
kinds of Broadcasts you want

3. register receiver (onResume() of Activity)

4. unregister receiver (onPause() of Activity)

-- alternatively use manifest to register receiver
50



Example: Step 1

• Start a service and print a toast at start up.

• Step one: subclass BroadcastReceiver

51



Example: Step 2

• Step 2: Create intent filter to listen for 
broadcast

• In manifest

52



Step 2 - More on Intent Filters

• For some Broadcasts you cannot use 
manifest to create IntentFilter

• must be done programmatically

53



Example: Step 3

• register receiver

• normally done in onResume of activity

• but no Activity on start up

• so, BroadcastReceiver in manifest file

• registers with System when app installed

• app must be started once for this to work

54



Spoofing Startup
• Painful to shut down and start up device

• Possible to spoof broadcasts

• recommend using emulator

• go to terminal

• adb shell

55

http://developer.android.com/tools/help/adb.html


BROADCAST RECEIVERS IN AUTO 
TEXTING APP

56



In SMS Responder

• Service has inner classes for 
BroadcastReceiver that listens for 
Broadcast of SMS message received

• create and register receivers when 
service stated

• unregister when service destroyed

• key point: override the onReceive
method for BroadcastReceiver subclass

57



SMS Received Broadcast

• from

• developer.android.com/reference/androi
d/provider/Telephony.Sms.Intents.html

58

https://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html


SMS Responder Service

• Create and register receivers

59



SMS Received - Broadcast Receiver

60



SMS Data

• The SMS data in the Bundle (map) is 
under the key "pdus"

–pdu, protocol data unit (some sources 
indicate protocol description unit)

61



respond method

62



PendingIntent

• Intent to deliver when some criteria met

• Parameters:

• this = context in which PendingIntent
should sendBroadcast

• 0 = private request code for sender

• sentIn = Intent to be Broadcast

• 0 = flags to modify send behavior
63



SMSManager.sendTextMessage

• address to send text to (destination, recipient)

• service center address (null = default)

• text of message

• pending intent to deliver when message sent

• pending intent to deliver when message 
delivered

64



BroadcastReceiver for Sent

65



SMS Sent

• Notify User with a Toast

–Probably better to use Notification

– Toast used so we see app in action during 
demonstration

66



Unregistering Receivers

• When no longer need unregister your 
receivers

• In this case when the service is shut down

67



INITIATING BROADCASTS 
OURSELVES

68



Broadcast Receivers

• Applications can initiate broadcasts to 
inform other applications of status or 
readiness

• Don't display UI

–may create status bar notifications

• Usually just a gateway to other 
components and does very minimal work

– initiate service based on some event

• Broadcasts are delivered as Intents
69



Broadcast Receivers

• intents sent by sendBroadcast() method

• LocalBroadcastManager to send 
Broadcasts within your application only

70



More on Broadcast Receivers

• can't initiate asynchronous actions in 
onReceive

– like creating and starting an AsyncTask

–because when method done 
BroadcastReceiver no longer active and 
system can and will kill the process

• May need to use Notification Manager 
or start a service

71



Stopping Service

• Once started service 
runs until device 
shut down

• Add option to start 
and shut down the 
service

• Could add capability 
to start service on 
device start up 

72


