
CS371m - Mobile Computing

Nifty Stuff

We have touched on many of the basic
features of the Android System and Apps

• Activities, Services,
Content Resolvers,
Broadcast Receivers

• Intents

• Activity Lifecycle

• UIs, widgets,
ViewGroups, ActionBar

• Location Manager

• Sensor Manager

• 2D graphics

• Persistence, Shared
Preferences

• Responsiveness

• Gestures

• SQLite

• Fragments

• Web APIs

• Navigation Strategies

Surface Scratched
• We have covered some of the basics
• Numerous features and capabilities we haven't covered
• Plus features added in every release
• Example: KitKat release, October 2013
• NFC via Host Card Emulation, printing framework, storage

access framework, low power sensors, step detector,
changes to SMS provider, full screen immersive mode,
transition framework for animating scenes, Chromium
WebView, screen recording, RenderScript Compute, IR
Blaster, and more!

• http://tinyurl.com/nmfaxwu
• Lollipop: November 2014: http://tinyurl.com/prpuqgy
• Marshmallow: October 2015: http://tinyurl.com/okd5oul

3

http://tinyurl.com/nmfaxwu
http://tinyurl.com/prpuqgy
http://tinyurl.com/okd5oul

AUDIO

4

Audio on Device

• Devices have multiple audio streams:
–music, alarms, notifications,

incoming call ringer, in call volume,
system sounds, DTMF tones (dual tone
multi frequency, the "traditional" phone
sounds and tones)

• Most of the streams are restricted to
system events, so we almost always use
STREAM_MUSIC via a MediaPlayer or
SoundPool

5

MEDIA PLAYER

6

Android Audio

• Using the MediaPlayer class

• Common Audio Formats supported:
–MP3, MIDI (.mid and others), Vorbis (.ogg),

WAVE (.wav) and others

• Sources of audio
– local resources (part of app)

– internal URIs (Content Provider for other
audio available)

– External URLs (streaming)

7

Audio Resources

• res/raw directory

• assets/ directory

– reference as file://andorid_asset in a URI

– can share with other apps via URI

• Store media in application local directory,
pull from network / web and store locally

• Store and use media on SD card

• Stream via the Internet

8

MediaPlayer

• Playback control of
MediaPlayer managed
as a state machine

• Idle

• Initialized

• Preparing

• Prepared

• Started

• Paused

• Playback Complete

• Stopped

• End

• Invalid state transitions
result in errors

9

• Single arrows are
synchronous
transitions

• Double arrows are
asynchronous
transitions

10

MediaPlayer State
Diagram

Simple Sound Demo App

• audio files local to app
placed in res/raw

• CAUTION

– large sound files difficult to
install on emulator:

–http://tinyurl.com/3pwljfj

–better success with dev
phones / actual devices

11

http://tinyurl.com/3pwljfj

Using MediaPlayer

• MediaPlayer.create() method used for
raw resources

• MediaPlayer.create() method for URIs

• various MediaPlayer.setDataSource()
methods if not a raw resource and not a
URI

12

Playing Local Audio

• To play audio local to the app

• use the MediaPlayer.create convenience
method
– when complete MediaPlayer in the prepared

state

• start MediaPlayer

• approach:
– build listeners for each button to call the

playSound method with appropriate song id
when clicked

13

Simple Approach

14

ids for sound files

button ids

playSound method initial version

• downsides of first version of app
–plays to completion

–multiple sounds play at same time
(desirable in some cases), code creates
multiple media players

– audio continues to play when app paused

15

Changing Behavior
• Add instance variable for MediaPlayer

• If playing stop and release before
creating new Player

16

Cleaning Up

• Initial version did not end well

• Audio continued to play if back button
pressed and even if home button
pressed!

• Activity Life Cycle

• in onPause for app we should stop
MediaPlayer and release

17

stopPlayer method

• Connect app stop button to stopPlayer

– could use XML onClick and add View
parameter or set up listener ourselves

18

in buildListeners method

onPause

• onPause() should
call the stopPlayer
method

• what happens if
activity resumed?

19

Saving State

• Resume music where we left off if
paused or activity destroyed due to
orientation change

20

Saving MediaPlayer State

• Not a lot of data so used the
SharedPreferences

21

Save location in
shared preferences

Restarting Audio
• In onResume check if audio was

interrupted recreate player with same id
and move to correct position

• Can write data to shared preferences or
bundle (onSaveInstanceState) and pull
out in onResume

22

HAPTIC FEEDBACK

23

Haptic Feedback

• haptic: "of or relating to the sense of touch"

• Simple to add this kind of feedback to
an app

• can enable haptic feedback for any view

• Can add complex haptic feedback of
our own

24

Haptic Feedback on a View

• Methods from View class

25

HapticFeedbackConstants Class

26

More Complex Feedback

• Also possible to create more complex
haptic feedback for apps:

• Request permission

• Get the Vibrator object from the system

• call vibrate method

27

Haptic Feedback

• Request Permission

• Get Vibrator

28

Haptic Feedback

• Create feedback

29

Vibrator Methods

30

RECORDING AUDIO

31

Simple and Complex

• Simple:

• There may already been an app to record
sound on the device.

• Create an Intent and call
startActivityForResult

• MediaStore.Audio.Media.RECORD_SOUND_ACTION

• Complex: read on

32

Recording Audio - MediaRecorder

1. create MediaRecorder object

2. set audio source

3. set audio format

4. set file format for audio

5. set file name to record to

6. prepare MediaRecorder for recording

7. start recording

8. stop and release MediaRecorder

33

Record Audio

• Simple View with
buttons to start
and stop
recording

• alternatively
could change text
on record audio
button
– single button or

toggle switch
34

Record Audio

35

Stop Recording

36

• a few seconds of audio results in a file size of
~ 10 kb with default settings

• PERMISSIONS! -- must request RECORD_AUDIO
and WRITE_EXTERNAL_STORAGE permissions in
manifest file

SPEECH RECOGNITION

37

Speech Recognition

• android.speech package

• Simplest example - start an Intent for a
result

RecognizerIntent.ACTION_RECOGNIZE_SPEECH

• uses network

– works on the dev phones

– doesn't work on emulator

38

Speech Recognition

39

Starting Intent

40

Responding to Result

• Note: list of results, ordered by confidence

41

Results

42

ACTIVITY RECOGNITION

43

Activity Recognition

• Google service to try and determine
user's current activity:

• Standing Still

• walking / on foot

• bicycle

• in vehicle

• unknown

44

Activity Recognition

• Uses recognition client

• Related but separate from location client

• Request frequency of updates

• Get list of updates and confidence level
of activity

45

Sample App

46

Sample App

47

Recognition Activity

• Special Permission

• Uses the Google Play services APK

–must ensure this is available on device

48

Recognition Activity

• Request updates on activities

• … and implement appropriate call back
methods

49

Get ActivityRecognitionClient

• Create a PendingIntent - an Intent that
will be handled at a later time

50

PendingIntent For ActvityRecognition

51

service to
receive
updates

Request Activity Updates

• Using the Pending Intent

52

Getting Data Back

• The ActivityRecognition Service will send
Intents with updates

• Create a subclass of IntentService to deal
with these

53

IntentService

• Implement the onHandleIntent method
to deal with incoming intents from
ActivityRecognition

• Formats data from Intent, logs to shared
preferences, notifies user if changed

54

NOTIFICATIONS

55

Notification

• Message to user from app OUTSIDE of
the app's normal UI

• Appears first in Notification Area

– formerly status bar notifications

• User looks at details of Notification in the
Notification Drawer

• The Notification Area and Notification
Drawer are both controlled by the system

56

57

http://developer.android.com/guide/topics/ui/notifiers/notifications.html

Notification Style - Normal

• In the drawer Notifications Normal View
or Big View

• Normal View

1. content title

2. large icon

3. content text

4. content info

5. small icon

6. time issued
58

Notification Style - Big

• Adds 7 -> details area

59

Notifications

• Advice for Notifications

–use for time sensitive
events

–… that involve other
people

–don't create notifications
for events not directed
at user

–don't create notification
for Activity that is active

60

Notifications Window

• Don't create
notifications for low
level technical details

• Don't create
notifications for errors
that user can't fix or if
app can recover on its
own

• Don't create
notifications for services
user can't start and stop

61

P

Bad Notifications

Notifications DOs

• Make it personal

– if notification caused by action of a contact,
include contact image or icon

• Navigate to correct place

–may take user to deep in app, update the
UP icon and back stack (UP vs. BACK)

• Manage priority

– in Jelly Bean notifications have a priority

62

Notification Priority

63

More Notification DOs
• Stack notifications if app creates multiple

notifications and user has not acted

64

More Notification Dos

• Make them optional - PLEASE

• use distinct icon

–but not a different color

• make LED glow based on priority

65

The Code of Notifications

• Notification Object

• Convenience NotificationBuilder

• Must have at a minimum

– small icon

– title

–detail text

66

Simple Notification Building

• Activity Recognition App

• Send notification to turn on GPS

67

Simple Notification Building

• Note setting title, text, and small icon

68

Notification Example

• Includes Intent so user can turn on the
GPS

• Didn't just tell them to turn on GPS,
make it easy for them to do so.

69

MATERIAL DESIGN

70

Material Design
• Introduced in Lollipop, Fall 2014

• Material design is a system and set of
guidelines to help users understand the user
interface and functionality of apps

• "Took a step back" and build a design
language based on classic design principles
and real world materials, namely paper and
ink.

71

Features of Material Design

• Objects (visible widgets) in an
app consist of paper and ink

• paper can de different sizes, but
preferred shapes are rectangles
and rounded rectangles

– all elements are 1 dpi thick

• paper elements can be
positioned next to and on top of
each other in layers

72

Features of Material Design
• Materials case shadows depending on their

position

• Guidelines on elevations for various
components, affects amount of shadow

73

Component
Elevation

Guide

74

Motion in Material Design

• Motion of interface elements used to convey
meaning

• Motion should be natural without abrupt starts
and stops

• User input from touch, voice, mouse, and
keyboard (chrome on desktops)

• Motion (animation) of user interface elements in
response to user actions

– surface reaction, material response, radial reaction

75

Surface Reaction

• reaction of the ink to
user input or action

• vary animation based
on point of input

• Touch Ripple

76

Material Response
• Material responds

to being touched
or activated by
the user

• indicates the
paper component
is made out of is
active, being used

• Move or
transform form
paper based on
interaction

• Move up when
activated

77

Radial action

• ink should respond like water when
touched

• ripples when touching a smooth surface
of water

78

MATERIAL DESIGN FOR
DEVELOPERS

79

How to Implement App
with Material Design

• What tools are available to add material
design features to our apps?

• Android 5.0 / Lollipop / API level 21
added:

• A new theme: material

• new widgets

• new view groups

• new apis for custom shadows and
animations

80

Material Theme

• More complex than past themes such as
theme and holo

• Includes:

• system widgets with option of picking
color palette

• built in touch feedback animations for
those system widgets

• activity transition animations

81

Using Material Theme

82

Creating Apps with Material Design

1. apply material theme to app

2. create layouts following material
design guidelines

3. specify elevation of views to cast
shadows

4. use system widgets for lists and cards

5. customize animations of app

83

Apply Material Theme

• Specify in styles.xml that your app style is
using Material Design

84

Create Lists and Cards

• Android 5.0 / Lollipop / API level 21
added view groups to make apps based
around material design possible

• RecycleView

• a more advanced and flexible version of
ListView

• inlcudes

• layout managers for positioning items

• built in animations
85

Create Layouts

• When using material design your layouts
have a elevation property

• affects shadows created by widget

86

WIDGETS

87

Widgets

• Referred to as an
App Widget

• widgets are miniature
application views than can
be added to other applications
– normally the Home Screen View

– other "App Widget Hosts"

• Widget sent periodic updates

• Widgets essentially a BroadcastRecevier
with XML layout

88

Widgets

• To create App Widget:

• Create a
AppWidgetProviderInfo

• object that contains
metadata for the App
Widget, layout, update frequency
– normally defined in XML

• Implement AppWidgetProvider class that
defines basic methods to update Widget

• create layout: not all layouts and UI widgets
supported

89

NFC - NEAR FIELD
COMMUNICATION

90

NFC

• Another short range wireless technology

• VERY short range: 4 cm or less to initiate a
connection

• Allows transmission of a small amount
("payload") of data between NFC tag or
another Android device

• NFC Tags offer read and write capability

• More complex tags can perform
mathematical ops, use encryption, and even
have an operating enviroment

91

NFC Modes of Operation

1. Reader / Writer mode
– allows NFC device to read and / or write

passive NFC tags and stickers

2. P2P mode
– allows NFC device to exhange data with

other NFC peers

– Used by Android Beam

3. Card emulation
– allow NFC device to act as an NFC card

92

NFC Basics

• Reading NDEF data from
an NFC tag

• NDEF: NFC Data Exchange Format

• tag dispatch system: analyzes discovered
tags, categories data, and starts applications
(via intent filters) interested in data

• tag dispatch system scanning for NFC tags if
screen unlocked (unless turned off in
settings)

93

Android Beam

• Android Beam allows
simple peer to peer
data exchange
between two Android powered devices

• enable Android Beam for an app by
calling:
– setNdefPushMessage(), accepts a

NdefMessage to beam

–OR setNdefPushMessageCallback() create
NDEF message when close enough to beam

94

BLUETOOTH

95

• wireless technology for exchanging data
between devices over short distances

• three different classes of Bluetooth
devices with ranges of 1, 10, and 100
meters

• Android devices provide access to the
Bluetooth network stack

96

Android and Bluetooth

• Android Bluetooth APIs

• Android devices can:

1. Scan for other Bluetooth Devices

2. Check local Bluetooth adapter for
paired devices

3. Connect to other Bluetooth devices

4. transfer data to and from connected
devices

97

Bluetooth API

98

A few classes:

Android - Bluetooth Basics

• Four major steps:

1. Setting up Bluetooth
– permissions, BluetoothAdapter (like a

manager), enable Bluetooth

2. finding paired or available devices

3. connecting devices

4. transferring data

http://developer.android.com/guide/topics/connectivity/bluetooth.html

99

http://developer.android.com/guide/topics/connectivity/bluetooth.html

COPY AND PASTE

100

Copy and Paste

• clipboard based framework

• simple and complex data types can be
copied and pasted

– text strings, complex data structures, text
and binary stream data

• Simple text stored on clipboard

• complex data handled via content
providers

101

Copy and Paste

• to copy and paste:

• data placed in clip object, clip object
placed on system-wide clipboard

• clip object can be:

– text, a simple String

–URI for copying complex data from a
content provider

– Intents to copy application shortcuts

• only one clip on clipboard at a time
102

Copy and Paste

• An app can support some or all of the
data types

• Examine data on clipboard and decide if
user should have option to paste it

–may not make sense to allow pasting of URI
/ content provider data or Intents

103

WI-FI DIRECT

104

Wi-Fi Direct

• Added in ICS, Android 4.0 API level 14

• allows devices with appropriate
hardware to connect directly via Wi-Fi
with no intermediate access point

• discover and connect to other devices

• much larger range than Bluetooth

• Useful for applications that share data
among users
–multi player game, photo sharing

105

Wi-Fi Direct

• WifiP2pManager class provides methods to
discover, request, and connect to peers

• Various Listeners that provide information on
success or failure of method calls from
WifiP2pManager

• Intents notify application of events detected
by Wi-Fi direct framework such as newly
discovered peer

– implement broadcast receiver for intents from
Android system about Wifi Direct

106

3D GRAPHICS

107

2D Graphics
• android.graphics library

for 2D graphics (not Java
AWT and Swing)

• classes such as Canvas,
Drawable, Bitmap, and
others to create 2D
graphics

• Various attempts to
make two d graphics
appear more "lifelike"
and 3 dimensional

108

Gradients

• Gradient Paints can
add depth to 2d
primitives

• Notice the gradient
paint on the pegs and
shading on numbers

109

2D Graphics

110

Wireframe Graphics
• 1979, Richard Garriott, Akalabeth

• Ultima series, Ultima Online

111

Wireframe Vector Graphics

• BattleZone - 1980

112

Parallax Scrolling Example

113

Parallax Scrolling

• multiple backgrounds

• backgrounds closer to view move at a
faster speed than backgrounds farther
away

114

2.5D
• Isometric Graphics

• "rotate" object to reveal details on the side

115Zaxxon Ultima Online

3D Graphics

• Create 3D model
– a small scene or a large world

• Model rendered into a 2D projection

• model includes
– objects (boxes, cones, cylinders, sphere, user

defined models)

– lighting

– cameras

– textures

– dynamic behaviors

116

3D Coordinate System

• x and y as expected (positive y is up, not
down as in 2d graphics

• z axis - positive z is out of screen,
negative z is into screen

117

y+

x+z+

z-

Visual Portion

• Portion of 3D Scene that is rendered is
contained in a frustum (pro: frəstəm)

– a pyramid or cone with its top cut off

118

objects in
scene, but not
visible

OpenGL

• Developed by Silicon
Graphics Inc.
–developer of high end

graphics systems and
machines in 80s and 90s

• Integrated Raster
Imaging System
Graphics Library
–1992 OpenGL

–maintained by non profit
Khronos Group 119

OpenGL

• low level, procedural API
–programmer responsible for defining steps

to create and render (show) a scene

• alternatives use a scene graph where
programmer describes scene and actions
(behaviors) and library manages the
details of rendering it
– Example of Graphics libraries that use Scene

Graphs: Java3D, Acrobat 3D, AutoCAD,
CorelDRAW, RenderMan (Pixar)

120

OpenGL ES

• ES = Embedded Systems

• Used in a wide variety of devices, not just
Android
– iPad, iPhone, Blackberry, symbian,

Nintendo3DS, Playstation 3, Web GL

• OpenGL version ES 2.0 API supported in
Android 2.2 and higher (API levels 8 and
higher)
– prior versions of Android support ES 1.1

• emulator DOES NOT support ES 2.0

121

Android and OpenGL ES

• two ways of working with GL:

– through the framework APIandroid.opengl
package

– via the Android Native Development Kit (NDK)

• companion tool to Android SDK to build portions
of apps in native code in C or C++

• Required Android classes for first
approach:

–GLSurfaceView and GLSurfaceView.Renderer

122

GLSurfaceView

• Similar to SurfaceView

• draw and manipulate objects using
Open GL API calls

• to respond to touch screen events
subclass GLSurfaceView and implement
touch listeners

123

GLSurfaceView.Renderer

• An interface

• Must implement these methods:

–onSurfaceCreated for actions that only
happen once such as initializing GL graphics
objects

–onDrawFrame() work horse method to
create movement and animation

–onSurfacechanged() called when size of
view changes or orientation

124

Manifest Requirements

• To use OpenGL ES 2.0 (Android 2.0 and
later)

• if app uses texture compression formats
must declare which formats application
supports

–<support-gl-texture>

125

Steps to Use OpenGL

• Create activity using GLSurfaceView and
GLSurfaceView.Renderer

• Create and draw graphics objects

• define projection for screen geometry to
correct for non square pixels

• define a camera view

• perform actions to animate objects

• make view touch interactive if desired

126

Sample Program

• Demonstrate set up of required elements

• draw and rotate a 3d object (a pyramid)

• Create Simple Activity that has a
GLSurfaceView as its content view

• To draw objects must implement
GLSurfaceView.Renderer

127

Activity

128

GLSurfaceView

• Shell of class

• Used to manage surface (special piece of
memory), manage EGL display
(embedded graphics library, renders on
thread decoupled from I thread, and
more

129

Skeleton Renderer

130

OpenGL Documentation

• Android Documentation for GL10 list
constants and methods but have no
other useful information

• Check the OpenGL ES documentation

• http://www.khronos.org/opengles/sdk/1
.1/docs/man/

131

http://www.khronos.org/opengles/sdk/1.1/docs/man/

Low Level Graphics Libraries

• "What makes the situation worse is that the
highest level CS course I've ever taken is cs4,
and quotes from the graphics group startup
readme like 'these paths are abstracted as
being the result of a topological sort on the
graph of ordering dependencies for the
entries' make me lose consciousness in my
chair and bleed from the nose."

-mgrimes, Graphics problem report 134

132

Draw a Shape

• Draw a simple, flat Triangle using OpenGL

• (X,Y,Z) coordinate system

• (0, 0, 0) center of frame

• (1, 1, 0) is top right corner of frame

• (-1, -1, 0) is bottom left corner of frame

• must define vertices of our triangle

133

Define Triangle

134

-1 0 1

1

0

-1

Draw Triangle
• init OpenGL to use vertex arrays

• call drawing API to draw triangle

135

Result

• oooo, ahhhh

• Graphics coordinate
system assumes a
square but mapped to a
rectangular frame

136

Correcting Projection

• Apply an OpenGL projection view and
camera (eye point) to transform
coordinates of the triangle

– "correct" the position onSurfaceChanged
and onDrawframe()

137

onSurfaceChanged

138

onDrawFrame

139

Result of Correcting Projection

140

Adding Motion

• in onDrawFrame

• define vector of rotation

141

Results

X Axis (angle, 1, 0, 0) Y Axis (angle, 0, 1, 0)

142

Results

Z Axis (angle, 0, 0, 1) Y Axis (angle, -1, 1, -1)

143

Another Example

• Draw a pyramid that bounces around the
screen

• Same basic steps as previous apps

• Activity with GLSurfaceView

• Implementation of
GLSurfaceView.Renderer

• Pyramid class that defines the geometry
and appearance of 3d pyramid object

144

Constructing Pyramid
• specify vertices for

6 triangles

• 4 sides, 2 triangles
for the base

145

0 (-1, -1, -1)

1 (-1, 1, -1) 2 (1, 1, -1)

3 (1, -1, -1)

4 (0, 0, 1) imagine it out
of screen

Constructing Pyramid

• Indices refers to set or coordinate (x, y, z)

146

Coloring Pyramid

• Define colors for each of the 5 vertices

• Colors blend from one vertex to another

• recall, rgba

147

Result

148

OpenGL Options

• Renderscript

–high performance, but low level

– scripts written in C

• OpenGLUT, OpenGL Utility Toolkit

–not officially part of Android, Android GLUT
Wrapper

– include more geometric primitives

149

RENDERSCRIPT

150

RenderScript

• Component of Android OS

• Purpose: run computationally intensive
tasks at high performance

• data-parallel computation

–RandomArt!

• Use RenderScript to parallelize work
across all processors on a device

–multi core CPUs

151

RenderScript

• Write a "RenderScript kernel" in
"C99 like" language

– ISO/IEC 9899:1999 version of C

• scripts contains sub kernels, functions,
and variables

152

RenderScript

• Plus a Java API to interact with the scripts
and control execution

– conduit between your application code and
the RenderScript

153

