CS378 - Mobile Computing

Sensing and Sensors

Sensors

- "I should have paid more attention in Physics 51"
- Most devices have built in sensors to measure and monitor
 - motion
 - orientation (aka position)
 - environmental conditions
- sensors deliver raw data to application

Using Sensors - Basics

- Obtain the SensorManager object
- create a SensorEventListener for SensorEvents
 - logic that responds to sensor event
 - various amounts of data from sensor depending on type of sensor
- Register the sensor listener with a Sensor via the SensorManager

Sensor Coordinate System

- For most motion sensors:
- +x to the right
- +y up
- +z out of front face
- relative to device

Sensor Coordinate System

- App that displays max acceleration along each axis
- Hold phone straight up and down and move to ground

Sensor Coordinate System

 Repeat but hold phone flat

... then sideways

- Not every device has every kind of sensor
- Constants from Sensor class
- TYPE_ACCELEROMETER
 - hardware
 - -acceleration force in m/s²
 - -x, y, z axis
 - includes gravity

- TYPE_AMBIENT_TEMPERATURE
 - hardware
 - "room" temperature in degrees Celsius
 - no such sensor on dev phones
- TYPE_GRAVITY
 - -software or hardware
 - just gravity
 - if phone at rest same asTYPE ACCELEROMETER

- TYPE_GYROSCOPE
 - hardware
 - measure device's rate of rotation in radians / second around 3 axis
- TYPE_LIGHT
 - hardware
 - light level in lx,
 - lux is SI measure illuminance in luminous flux per unit area

- TYPE_LINEAR_ACCELERATION
 - -software or hardware
 - measure acceleration force applied to device in three axes excluding the force of gravity
- TYPE_MAGNETC_FIELD
 - hardware
 - -ambient geomagnetic field in all three axes
 - -uT micro Teslas

- TYPE_ORIENTATION [deprecated]
 - software
 - measure of degrees of rotation a device makes around all three axes
- TYPE_PRESSURE
 - hardware
 - ambient air pressure in hPa or mbar
 - force per unit area
 - 1 Pascal = 1 Newton per square meter
 - hecto Pascals (100 Pascals)
 - milli bar 1 mbar = 1hecto Pascal

- TYPE_PROXIMITY
 - hardware
 - proximity of an object in cm relative to the view screen of a device
 - most just binary (see range, resolution)
 - typically used to determine if handset is being held to person's ear during a call
- TYPE_RELATIVE_HUMIDITY
 - -ambient humidity in percent (0 to 100)

- TYPE_ROTATION_VECTOR
 - hardware or software
 - orientation of device, three elements of the device's rotation vector
- TYPE_TEMPERATURE
 - hardware
 - temperature of the device in degreesCelsius

Availability of Sensors

Sensor	Android 4.0 (API Level 14)	Android 2.3 (API Level 9)	Android 2.2 (API Level 8)	Android 1.5 (API Level 3)
TYPE ACCELEROMETER	Yes	Yes	Yes	Yes
TYPE AMBIENT TEMPERATURE	Yes	n/a	n/a	n/a
TYPE GRAVITY	Yes	Yes	n/a	n/a
TYPE GYROSCOPE	Yes	Yes	n/a ¹	n/a ¹
TYPE LIGHT	Yes	Yes	Yes	Yes
TYPE LINEAR ACCELERATION	Yes	Yes	n/a	n/a
TYPE MAGNETIC FIELD	Yes	Yes	Yes	Yes
TYPE ORIENTATION	Yes ²	Yes ²	Yes ²	Yes
TYPE PRESSURE	Yes	Yes	n/a ¹	n/a ¹
TYPE PROXIMITY	Yes	Yes	Yes	Yes
TYPE RELATIVE HUMIDITY	Yes	n/a	n/a	n/a
TYPE ROTATION VECTOR	Yes	Yes	n/a	n/a
TYPE TEMPERATURE	Yes ²	Yes	Yes	Yes

Listing Types of Sensor on Device

```
private void createSensor() {
   sensorManager =
           (SensorManager) getSystemService(Context.SENSOR_SERVICE)
   showSensors();
  private void showSensors() {
      List<Sensor> sensors
           = sensorManager.getSensorList(Sensor.TYPE_ALL);
      Log.d(TAG, sensors.toString());
      for(Sensor s : sensors)
           Log.d(TAG, "Sensor: "
                   + s.getName() + ", " + s.getVendor());
```

Types of Sensors - Dev Phone

```
Sensor: KR3DM 3-axis Accelerometer, STMicroelectron
Sensor: AK8973 3-axis Magnetic field sensor, Asahi
Sensor: AK8973 Orientation sensor, Asahi Kasei Micr
Sensor: GP2A Light sensor, Sharp
Sensor: GP2A Proximity sensor, Sharp
Sensor: K3G Gyroscope sensor, STMicroelectronics
Sensor: Gravity Sensor, Google Inc.
Sensor: Linear Acceleration Sensor, Google Inc.
Sensor: Rotation Vector Sensor, Google Inc.
```

 accelerometer, linear acceleration, magnetic field, orientation, light, proximity, gyroscope, gravity

Sensor Capabilities

- Various methods in Sensor class to get capabilities of Sensor
- minDelay (in microseconds)
- power consumption in mA (microAmps)
- maxRange
- resolution

Sensor Capabilities - Dev Phones

```
KR3DM 3-axis Accelerometer - minDelay: 20000, power: 0.23
max range: 19.6133, resolution: 0.019153614
AK8973 3-axis Magnetic field sensor - minDelay: 16667, power: 6.8
max range: 2000.0, resolution: 0.0625
GP2A Light sensor - minDelay: 0, power: 0.75
max range: 3626657.8, resolution: 1.0
GP2A Proximity sensor - minDelay: 0, power: 0.75
max range: 5.0, resolution: 5.0
K3G Gyroscope sensor - minDelay: 1190, power: 6.1
max range: 34.906586, resolution: 0.0012217305
Rotation Vector Sensor - minDelay: 20000, power: 13.13
max range: 1.0, resolution: 5.9604645E-8
Gravity Sensor - minDelay: 20000, power: 13.13
max range: 19.6133, resolution: 0.019153614
Linear Acceleration Sensor - minDelay: 20000, power: 13.13
max range: 19.6133, resolution: 0.019153614
Orientation Sensor - minDelay: 20000, power: 13.13
max range: 360.0, resolution: 0.00390625
Corrected Gyroscope Sensor - minDelay: 1190, power: 13.13
max range: 34.906586, resolution: 0.0012217305
```

Getting Sensor Data

- registerListener
 - sensorEventListener
 - Sensor -> obtain via SensorManager
 - rate of updates, a hint only, or microseconds (not much effect)
- returns true if successful

SensorEventListener

```
private SensorEventListener sensorEventListener =
    new SensorEventListener() {
        @Override
        public void onSensorChanged(SensorEvent event) {
            // Log.d(TAG, event + "");

            // accelerationValues[0].setText("" + event.valu

            // displayCurrent(event);

            displayMax(event);
        }
}
```

Display Max

```
private void displayMax(SensorEvent event) {
    for(int i = 0; i < maxVals.length; i++)
        if(Math.abs(event.values[i]) > maxVals[i]) {
            maxVals[i] = (float) Math.abs(event.values[i]);
            float value = ((int) (maxVals[i] * 1000)) / 1000f;
            accelerationValues[i].setText("" + value);
        }
}
```

Recall, max range of linear acceleration on dev phone is 19.613 + gravity = 29.423 - a baseball pitcher throwing a fastball reaches 350 m/s² or more (various "physics of baseball" articles)

Display Current

```
private void displayCurrent(SensorEvent event) {
    if(!zeroingComplete)
        gatherZeroData(event);

    for(int i = 0; i < accelerationValues.length; i++) {
        float value = event.values[i];
        value = ((int) (value * 1000)) / 1000f;
        accelerationValues[i].setText("" + value);
    }
}</pre>
```

- Lots of jitter
- Attempt to zero out

Accelerometer - Includes Gravity

- Sensor.TYPE_ACCELEROMETER
- Device flat on table
- $g \sim = 9.81 \text{ m/s}^2$

SensorTest i: 0, zerovalue: -0.19007805
SensorTest i: 1, zerovalue: -0.42606363
SensorTest i: 2, zerovalue: 9.776483

Linear Acceleration

At rest of table

• units are m/s²

Zeroing out

- Take average of first multiple (several hundred) events and average
 - -shorter time = more error
- Potential error
 - -should be 0 at rest

```
SensorTest i: 0, zerovalue: 7.4665865E-4
SensorTest i: 1, zerovalue: -0.003574672
SensorTest i: 2, zerovalue: -0.02909316
```

```
i: 0, zerovalue: -0.0035472375
i: 1, zerovalue: -0.0018564985
i: 2, zerovalue: -0.022586245
```

Rate of Events

- 1000 events
- SensorManager.SENSOR_DELAY_UI
 - -times in seconds: 21, 21, 21
 - -21 seconds / 1000 events
- SensorManager.SENSOR_DELAY_FASTEST
 - -times in seconds: 21, 21, 21
- Recall delay of 20,000 micro seconds
- $2x10^4 \times 1x10^3 = 2x10^7 = 20$ seconds