
CS378 - Mobile Computing

2D Graphics



Android Graphics

• Does not use the Java awt or swing packages

• Whole set of custom classes

• Canvas: class that holds code for various 

"draw" methods

• Paint: Controls the drawing. A whole host of 

properties. Similar to Java Graphics object

• Bitmap: the things drawn on

• Drawable: the thing to draw. (rectangles, 

images, lines, etc.)
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Common Methods for Drawing

• Two approaches

• draw graphics or animations into a View 

object that is part of layout

– define graphics that go into View

– the simple way

• Draw graphics directly to a Canvas

– the complex way

3



Simple Graphics
• Use Drawables in Views

• Create a folder res/drawable

• Add images
– png (preferred)

– jpg (acceptable)

– gif (discouraged)

• Images can be added as background for 
Views
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Simple Graphics

• Change background to an image

– previously used background colors
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Top Ten With Image Background
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Add ImageView to Layout

• In the main.xml for top 

ten
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ImageView Attributes

• scaleType: how image 

should be moved or 

resized in the 

ImageView

• tint: affects color of 

image

• more to position image 

in ImageView
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Changing ImageView Programmatically

• Randomly set the alpha 

(transparency of the image)

• Or pick an image randomly

• Or set image based on 

month (Season)
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Using a Canvas

• Simple way -> Create a custom View and 
override the onDraw method

• The Canvas is sent as a parameter

• Create a class that extends View

– override the 2 parameter constructor

– override the onDraw method

– perform custom drawing in the onDraw
method

– add the View to the proper layout
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Simple Example - Graphics View
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GraphicsView - onDraw
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Add CustomView to XML

• in main.xml

• add custom View as last element in 

LinearLayout
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Canvas Class

• methods to draw

– lines

– arcs

– paths

– images

– circles

– ovals

– points

– text

– and a few I missed 
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Paint

• typically create Paint with anti aliasing

• Paint p = 

new Paint(Paint.ANTI_ALIAS_FLAG);
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Anti Aliasing
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Paint Object

• many, many attributes and properties 

including:

– current color to draw with

– whether to fill or outline shapes

– size of stroke when drawing

– text attributes including size, style (e.g. 

underline, bold), alignment, 

– gradients
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Gradients

• 3 kinds of gradients

• LinearGradeint

• RadialGradeint

• SweepGradient

• at least 2 color, but possibly more

• flows from one color to another
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Linear Gradient
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LinearGradient
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RadialGradient
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RadialGradient
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SweepGradient
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SweepGradient
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SweepGradient
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SweepGradient
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SweepGradient
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GuessFour
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Simple Animations

• Tweened Animations

• provide a way to perform simple 

animations on Views, Bitmaps, 

TextViews, Drawables

• provide start point, end point, size, 

rotation, transparency, other properties

• Can set up tweened animation in XML or 

programmatically
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GuessFour Example

• On error board shakes back and forth

• On win board shakes up and down

• From BoardView in GuessFour
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res/anim

• shake up down

• shake left right
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More Tweened Examples

• hyperspace example from 

android dev site

• rotate and change alpha

• animation types:

– alpha

– scale

– translate

– rotate
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http://developer.android.com/guide/topics/resources/animation-resource.html



More Complex Graphics

• Don't want apps to become unresponsive

• If complex graphics or animation use 
SurfaceView class

• Main view not waiting on onDraw to 
finish

• secondary thread with reference to 
SurfaceView

• SrufaceView draws and when done 
display result
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Using a SurfaceView

• extend SurfaceView

• implement SurfaceHolder.Callback

– methods to notify main View when 

SurfaceView is created, changed or 

destroyed
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Simple Example

• Static Screen

• continuously draw several hundred small 

rectangles (points, with stroke = 10)

– slowly fill screen and then keep changing
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Implement SurfaceHolder.Callback

methods
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Prevent Runaway Threads!
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Inner Class for Thread
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Run Method in StaticThread
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Standard Approach for 

Drawing on SurfaceView



Demo run()

• Pronounced flicker 

and jitter

• Double buffer under 

the hood

• We are drawing on 

two different Bitmaps

• Canvas does drawing 

onto Bitmap
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Remove Flicker / Jitter

• If we draw 

background each 

"frame" then we 

don't redraw 

previous rectangles

• How about "saving" 

all the data?

– points, colors
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Alternative

• Recall two approaches:

– draw on UI thread by overriding onDraw

• create custom View (tutorial 4)

• okay if not a lot of drawing

– must keep UI thread responsive

• complex drawing or animations using 
SurfaceView

• Third approach, possible variation on the 
above two approaches

– maintain a separate Bitmap
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Separate Bitmap

• StaticThread has a Bitmap instance var

• Initialize in constructor
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Updates to Bitmap
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Create a 

Canvas to

draw on 

the  Bitmap 

we are 

saving

When done

drawing to

Bitmap use

SurfaceView

Canvas to

draw



Demo Alt Version of run()

• Flicker and 

jitter?

• Also possible 

to save Bitmap 

to file for later 

use

45



Animations

• Frame based vs. Time based

• Frame based:
– update every frame

– simple, but difference in frame 
rates

• Time based
– update every frame but based 

on time elapsed since last 
frame

– more work, more accurate

– sdk example lunar lander
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Checking Frame Rate

• From StaticView

• Emulator 6-7 fps, dev phone 40 -45 fps
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Controlling Frame Rate

• Sleep after completing work in loop of 

run

• More complex than shown, use previous 

time and current time
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