
CS378 - Mobile Computing

2D Graphics

Android Graphics

• Does not use the Java awt or swing packages

• Whole set of custom classes

• Canvas: class that holds code for various

"draw" methods

• Paint: Controls the drawing. A whole host of

properties. Similar to Java Graphics object

• Bitmap: the things drawn on

• Drawable: the thing to draw. (rectangles,

images, lines, etc.)

2

Common Methods for Drawing

• Two approaches

• draw graphics or animations into a View

object that is part of layout

– define graphics that go into View

– the simple way

• Draw graphics directly to a Canvas

– the complex way

3

Simple Graphics
• Use Drawables in Views

• Create a folder res/drawable

• Add images
– png (preferred)

– jpg (acceptable)

– gif (discouraged)

• Images can be added as background for
Views

4

Simple Graphics

• Change background to an image

– previously used background colors

5

Top Ten With Image Background

6

Add ImageView to Layout

• In the main.xml for top

ten

7

ImageView Attributes

• scaleType: how image

should be moved or

resized in the

ImageView

• tint: affects color of

image

• more to position image

in ImageView

8

Changing ImageView Programmatically

• Randomly set the alpha

(transparency of the image)

• Or pick an image randomly

• Or set image based on

month (Season)

9

Using a Canvas

• Simple way -> Create a custom View and
override the onDraw method

• The Canvas is sent as a parameter

• Create a class that extends View

– override the 2 parameter constructor

– override the onDraw method

– perform custom drawing in the onDraw
method

– add the View to the proper layout

10

Simple Example - Graphics View

11

GraphicsView - onDraw

12

Add CustomView to XML

• in main.xml

• add custom View as last element in

LinearLayout

13

Canvas Class

• methods to draw

– lines

– arcs

– paths

– images

– circles

– ovals

– points

– text

– and a few I missed

14

Paint

• typically create Paint with anti aliasing

• Paint p =

new Paint(Paint.ANTI_ALIAS_FLAG);

15

Anti Aliasing

16

Paint Object

• many, many attributes and properties

including:

– current color to draw with

– whether to fill or outline shapes

– size of stroke when drawing

– text attributes including size, style (e.g.

underline, bold), alignment,

– gradients

17

Gradients

• 3 kinds of gradients

• LinearGradeint

• RadialGradeint

• SweepGradient

• at least 2 color, but possibly more

• flows from one color to another

18

Linear Gradient

19

LinearGradient

20

RadialGradient

21

RadialGradient

22

SweepGradient

23

SweepGradient

24

SweepGradient

25

SweepGradient

26

SweepGradient

27

GuessFour

28

Simple Animations

• Tweened Animations

• provide a way to perform simple

animations on Views, Bitmaps,

TextViews, Drawables

• provide start point, end point, size,

rotation, transparency, other properties

• Can set up tweened animation in XML or

programmatically

29

GuessFour Example

• On error board shakes back and forth

• On win board shakes up and down

• From BoardView in GuessFour

30

res/anim

• shake up down

• shake left right

31

More Tweened Examples

• hyperspace example from

android dev site

• rotate and change alpha

• animation types:

– alpha

– scale

– translate

– rotate

32

http://developer.android.com/guide/topics/resources/animation-resource.html

More Complex Graphics

• Don't want apps to become unresponsive

• If complex graphics or animation use
SurfaceView class

• Main view not waiting on onDraw to
finish

• secondary thread with reference to
SurfaceView

• SrufaceView draws and when done
display result

33

Using a SurfaceView

• extend SurfaceView

• implement SurfaceHolder.Callback

– methods to notify main View when

SurfaceView is created, changed or

destroyed

34

Simple Example

• Static Screen

• continuously draw several hundred small

rectangles (points, with stroke = 10)

– slowly fill screen and then keep changing

35

Implement SurfaceHolder.Callback

methods

36

Prevent Runaway Threads!

37

Inner Class for Thread

38

Run Method in StaticThread

39

Standard Approach for

Drawing on SurfaceView

Demo run()

• Pronounced flicker

and jitter

• Double buffer under

the hood

• We are drawing on

two different Bitmaps

• Canvas does drawing

onto Bitmap

40

Remove Flicker / Jitter

• If we draw

background each

"frame" then we

don't redraw

previous rectangles

• How about "saving"

all the data?

– points, colors

41

Alternative

• Recall two approaches:

– draw on UI thread by overriding onDraw

• create custom View (tutorial 4)

• okay if not a lot of drawing

– must keep UI thread responsive

• complex drawing or animations using
SurfaceView

• Third approach, possible variation on the
above two approaches

– maintain a separate Bitmap

42

Separate Bitmap

• StaticThread has a Bitmap instance var

• Initialize in constructor

43

Updates to Bitmap

44

Create a

Canvas to

draw on

the Bitmap

we are

saving

When done

drawing to

Bitmap use

SurfaceView

Canvas to

draw

Demo Alt Version of run()

• Flicker and

jitter?

• Also possible

to save Bitmap

to file for later

use

45

Animations

• Frame based vs. Time based

• Frame based:
– update every frame

– simple, but difference in frame
rates

• Time based
– update every frame but based

on time elapsed since last
frame

– more work, more accurate

– sdk example lunar lander

46

Checking Frame Rate

• From StaticView

• Emulator 6-7 fps, dev phone 40 -45 fps

47

Controlling Frame Rate

• Sleep after completing work in loop of

run

• More complex than shown, use previous

time and current time

48

