CS378 - Mobile Computing

Persistence

Saving State

 We have already seen saving app state
into a Bundle on orientation changes or
when an app is killed to reclaim
resources but may be recreated later

@Override

protected void [EEVEOGSIE414-(Bundle outState) {

super.onSavelnstanceState(outState);
Log.d(TAG, "in onSavelnstanceState");

outState.putCharArray(“board”, mGame.getBoardState());
outState.putBoolean("mGameOver"”, mGameOver);
outState.putCharSequence("info", mInfoTextView.getText());
outState.putChar("mTurn™, mTurn);
outState.putChar("mGoesFirst"”, mGoesFirst);

Storing Data

Multiple options for storing data
associated with apps

Shared Preferences
Internal Storage

—device memory
External Storage
SQLite Database

Network Connection

Sharing Data

* Private data can be shared by creating a
Content Provider

* Android has many built in Content
Providers for things such as

—audio (random song from last time)
—images
—video

—contact information

Shared Preferences

* Private primitive data stored in key-value
pairs

* SharedPreferences Class

e Store and retrieve key-value pairs of data

—keys are Strings

—values are Strings, Sets of Strings, boolean,
float, int, or long

* Not strictly for preferences

Using SharedPreferences

* Obtain a SharedPreferences object for
application using these methods:

—getSharedPreferences(String name, int
mode)

e if you want multiple files

—getPreferences(int mode)

// restore the scores and difficulty

SharedPreferences mPrefs = getSharedPreferences("ttt prefs”, MODE PRIVATE);
mHumanWins = mPrefs.getInt("mHumanWins", 0);

mComputerWins = mPrefs.getInt("mComputeriWins”, @);

mTies = mPrefs.getInt("mTies", @);
mGame.setDifficultylevel(TicTacToeGame.Difficultylevel.values()[mPrefs.getI

SharedPreferences Modes

File creation modes

Constants from the Context class
— Activity is a descendant of Context

MODE_PRIVATE

— accessed only by calling application
MODE_WORLD_READABLE

— other applications have read access

MODE_WORLD_WRITEABLE
— other applications have write access

MODE_MULTI_PROCESS

— file on desk checked for modification even if shared
preferences instance loaded. (Multiple threads using the
same file)

Writing to SharedPreferences

e After obtaining SharedPreferences
object:

— call edit() method on object to get a
SharedPreferences.Editor object

—place data by calling put methods on the
SharedPreferences.Editor object

—also possible to clear all data or remove a
particular key

Writing to SharedPreferences

* When done writing data via the editor
call either apply() or commit()
e apply() is the simpler method

—used when only one process expected to
write to the preferences object

e commit() returns a boolean if write was
successful

—for when multiple process may be writing to
preferences

Reading From Shared Preferences

» After obtaining SharedPreferences object
use various get methods to retrieve data

* Provide key (string) and default value if
key is not present

e get Boolean, Float, Int, Long, String,
StringSet

o getAll() returns Map<String, ?> with all of
the key/value pairs in the preferences

10

Shared Preferences File
e Stored as XML

<?xml version='1l.0' encoding='utf-8' standalone='yes' ?>

<map>
<string name="victory message">Excellent</string>
<int name="board color" value="-65528" />

<int name="mTies" value="6" />

<string name="difficulty level">Harder</string>
<int name="mComputerWins" value="1" />

<int name="mDifficulty" value="1" />

<int name="mHumanWins" value="9" />

</map>

11

Preference Activity

* An Activity framework to
= ol & 839

allow user to select and set e
preferences for your app Sound v

Turn the sound on or off

¢ tUtoriaI 6 haS dan example Victory message
Excellent

— difficulty, sound, color,

: Difficulty level
victory message Harder

* Main Activity can start a Board Color
preference activity to allow
user to set preferences

12

Internal Storage

Private data stored on device memory
More like traditional file i/o

by default files are private to your
application
—other apps cannot access

files removed when app is uninstalled

13

Internal Storage

* To create and write a private file to the
device internal storage:

 call openFileOutput(String name, int mode)
— method from Context
— file created if does not already exist

— returns FileOutputStream object (regular Java
class)

e Modes same as SharedPreferences minus
MODE_MULTI_PROCESS and addition of
MODE_APPEND

14

Writing to Files

* FileOutputStream writes raw bytes

—arrays of bytes or single bytes

 Much easier to wrap the
FileOutputStream in PrintStream object

public void writeFile(View v) {

try {
FileOutputStream fos

F openFileOutput(“sampleData"”, MODE_PRIVATE);
PrintStream writer = new PrintStream(fos);
Random r = new Random();
for(int 1 = ©; 1 < 1000; i++) {
writer.println(r.nextInt());

}

writer.close();

}
catch(FileNotFoundException e) {

Log.d(TAG, "Exception trying to open file: " + e);
} 15
}

Reading from Files

%, Threads | (] Heap | @ Allocation Tracker File Explorer 3

e files saved to device

(= com.example.and: 2012-03-18

o (= com.example.andr 2012-03-18

— d ata d I re Cto ry fo r a p p (= com.example.and: 2012-03-18
= com.svox.pico 2012-02-26

. . (> jp.co.omronsoft.o| 2012-03-18

 call openFilelnput(String e o
. a [~ files 2012-03-18

t h d t bt | sampleDat: 11040 2012-03-18

name) method to obtain a B
o I (= shared_prefs 2012-03-18
F I tSt (= scottm.examples.c 2012-03-18
I e n p u rea m (= scottmd3.tictactoe 2012-03-18

* FilelInputStream reads bytes

— for convenience may connect
to Scanner object or wrap in
a DatalnputStream object

Time
20:17
20:17
20:17
17:48
20:32
20:17
21.07
21:.07
21:.07
21:.07
20:09
20:17
20:31

Permissions
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxrwx--x
-PW-TW----
drwxr-xr-x
drwxrwx--x
drwxr-x--x

drwxr-x--x

16

Static Files

* If you need / have a file with a lot of data
at compile time:

—save file in project res/raw / directory

—can open file using the
openRawResource(int id) method and pass
the R.raw.id of file

—returns an InputStream to read from file

—cannot write to the file

17

Cache Files

* |f need to cache data for application
instead of storing persistently:

—call getCacheDir() method to obtain a File
object that is a directory where you can
create and save temporary cache files

—files may be deleted by Android later if
space needed but you should clean them up
on your own

—recommended to keep under 1 MB

18

External Files - Other Useful Methods

All of these are inherited from Context
File getFileDir()

— get absolute path to filesystem directory when
app files are saved

File getDir(String name, int mode)

— get and create if necessary a directory for files
boolean deteleFile(String name)

— get rid of files, especially cache files

String|] fileList()

— get an array of Strings with files associated
with Context (application)

19

External Storage

 Public data stored on shared external
storage

* may be SD (Secure Digital) card on non
removable

* files saved to external storage are world-
readable

* files may be modified by user when they
enable USB mass storage for device

20

Checking Media Availability

e Call
Environment.getExternalStorageState()
method to determine if media available

—may be mounted to computer, missing,
read-only or in some other state that
prevents accessing

21

Checking Media State

boolean mExternalStorageAvailable = false;
boolean mExternalStorageWriteable = false:;
String state = Environment.getExternalStorageState():

if (Environment.MEDIA MOUNTED.equals(state)) {

// We can read and write the media

mExternalStorageAvailable = mExternalStorageWriteable = true;
; else if (Environment.MEDIA MOUNTED READ ONLY.equals(state)) {
// We can only read the media

mExternalStorageAvailable = true;

mExternalStorageWriteable = false;

- else {

// Something else is wrong. It may be one of many other states,
// to know is we can neither read nor write

mExternalStorageAvailable = mExternalStorageWriteable = false;

e other states such as media being shared,
missing, and others

22

Accessing Files on External Storage

call getExternalFilesDir(String type) to obtain

a directory (File object) to get directory to
save files

* type is String constant from Environment

class

— DIRECTORY_ALARMS, DIRECTORY_ DCIM
(D|g|tal Camera IIVIages)

RECT

o U U U U

RECT
RECT
RECT
RECT

OOOOO

RY_DOWNLOADS,

RY_MOVIES, DIRECTORY_MUSIC,
RY_NOTIFICATIONS,

RY_PICTURES, DIRECTORY_PODCASTS,

RY_RINGTONES

23

External File Directory

* If not a media file then send null as
parameter to getExternalFilesDir()
method

 The DIRECTORY_ <TYPE> constants allow
Android's Media Scanner to categorize
files in the system

* External files associated with application
are deleted when application uninstalled

24

External Data Shared Files

* |f you want to save files to be shared with
other apps:

* save the files (audio, images, video, etc.)
to one of the public directories on the
external storage device

* Environment.getExternalStoragePublicDirectory(
Strint type) method returns a File object

which is directory

e same types as getExternalFilesDir
method

25

Examining Shared Directories

* Not the same as the system media
directories

private void showDirs() {
for(String type : types) {
File dir = Environment
LgetExternaLStoragePubLicDirectony(type);
Log.d(TAG, "type: " + type + ", dir: " + dir);
File[] files = dir.listFiles();
if(files != null)
for(File f : dir.listFiles())
Log.d(TAG, £ + "");

26

PTest
PTest
PTest
PTest
PTest
PTest
PTest
PTest
PTest
PTest
PTest
PTest
PTest

Result

type: Alarms, dir: /mnt/sdcard/Alarms

type: DCIM, dir: /mnt/sdcard/DCIM
/mnt/sdcard/DCIM/.thumbnails
/mnt/sdcard/DCIM/100ANDRO

type: Download, dir: /mnt/sdcard/Download

type: Movies, dir: /mnt/sdcard/Movies

type: Music, dir: /mnt/sdcard/Music
/mnt/sdcard/Music/Susan Boyle - Amazing grace.mp3
/mnt/sdcard/Music/Rem - Losing My Religion.mp3
type: Notifications, dir: /mnt/sdcard/Notifications
type: Pictures, dir: /mnt/sdcard/Pictures

type: Podcasts, dir: /mnt/sdcard/Podcasts

type: Ringtones, dir: /mnt/sdcard/Ringtones

27

SQLite Database

e Structured data stored in a private
database

e More on this next lecture

28

Network Connection

e Store data on web with your own
network server

e Use wireless or carrier network to store
and retrieve data on web based server

e classes from java.net and android.net

29

