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The Problem

One of the classic problems in computing is
string searching: find the first occurrence
of one character string ( “the pattern™) in
another (“the text").

Generally, the text is very large (e.g.,
gigabytes) but the patterns are relatively
small.



Examples

Find the word “comedy” In this NY Times
article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...



AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA
AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC
TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA
AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA
AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT
TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA
AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT
CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA
TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA
AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT
TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT
TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA
AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA
CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA
AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA
ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT
AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA
AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG
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Ohjective: The authers consider the problem of exact string pattern matching using algorithms that
do not require any preprocessing. To choose the most appropriate algorithm, distinctive features of
the medical language must be taken info account. The characteristics of medical language are
emphasized in this regard, the best algorithm of those reviewed is proposed, and detailed

- evaluations of time complexzity for processing medical texts are provided.

Design: The authors first illustrate and discuss the technigues of various string pattern-matching
algorithms, Next, the source code and the behavior of representative exact string pattern-matching
algorithms are presented in a comprehensive manner to promote their implementation, Detailed
explanations of the use of various techniques to improve performance are given.
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Measurements: Real-time measures of time complexity with English medical tezts are presented.
They lead to results distinet from those found in the computer science literature, which are
typically computed with normally distributed texts,

T Horspool algorithm achieves the best overall results when used with
medical texts. This algorithm usually performs at least twice as fast as the other algorithms tested.
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Variants of the problem allow wildcards in
the pattern and/or the text. Exact
matching is when no wildcards are allowed.

We describe the fastest sequential
algorithm for solving the exact string
searching problem. The algorithm is called
the Boyer-Moore fast string searching
algorithm.



Example

Find the word “comedy” In this NY Times
article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...
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Key Property: The longer the pattern, the

faster the search!



Pre-Computing the Skip Distance

pat: 543210
COMEDY
txt: xXXXXOXXXXXXXXXXX. ..

1

A6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C b H 6 M 3 R 6 W 6
D1 I6 N 6 S 6 X 6
E 2 J 6 04 T 6 Y O

Z 6

This i1s a 1-dimensional array, skiplc], as
big as the alphabet.



COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6
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But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ——————

44



But Wait! There’s More!

pat: NONPARTIPULAR
txt: ——————————- R-—————————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- A
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P————————————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P————————————

Slide 2 to match the discovered character.
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PP ?——————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- PAR—————————-
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But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ——————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: ———————————- R——————————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- AR
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PAR
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PAR
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But Wait! There’s More!

pat: NONPARTIPULAR

Slide 7 to match the discovered substring!

56



i |pat]
||
pat: NONPARTIPULAR

txt: —————————-— PAR-—-———————-—

dt: txtl[i] patlj+1] ... patl|pat|]

P A R
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dt: txtli] patlj+1] ... patl|pat|]

dt can be computed given txt[i] and index
7 In pat!

There are only |a| X |pat| combinations,
where |a| is the alphabet size.
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The Skip Distance — Delta

Given pat, the skip can be pre-computed
for every combination of character read, c,
and pattern index, 7, by finding how far we
must slide to find the /ast occurrence of dt
In pat.
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pat: NONPARTIPULAR
txt: ———————- PAR

60



NONPARTIPULAR

61



pat: BC-ABC-BBC-CBC
txt: —————————- BBC

62



BC-ABC-BBC-CBC
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pat: BC-ABC-BBC-CBC
txt: ——————————- ABC
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BC-ABC-BBC-CBC
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pat: BC-ABC-BBC-CBC
txt: —————————- DBC
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BC-ABC-BBC-CBC
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pat: EE-ABC-BBC-CBC
txt: —————————- DBC

68



EE-ABC-BBC-CBC
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The Delta Array

deltalc,j| is an array of size |a| x |pat]
that gives the skip distance when a
mismatch occurs after comparing ¢ from
txt to pat|j].

70



The Algorithm

fast (pat, txt)

If pat = ""
then
If txt = ""
then return Not-Found;
else return 0; end;
end;
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preprocess pat to produce delta;

j = |pat| —1;
L= )
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while (0 < 7 A @ < |tot))
do
If pat|j] = tat|i]

then

1 =1 — 1;

g =7—-1;

else

i := 1+ deltaltxt[i], j];
j = |pat| — 1;

end;
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If (7 <0)
then return 7+ 1;
else return Not-Found; end;

end;
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Performance
How does the algorithm perform?

This depends on the size of the alphabet.
We only have data on English text right
now.

In our test:

txt: English text of length 177,985.
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pat: 100 randomly chosen patterns of
length 5 — 30, chosen from another English
text and filtered so they do not occur in
the search text.

The naive string searching algorithm would
look at all 177,985 characters of the search
text. In fact, it would look at some
characters more than once.
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Number of Characters Read from Text
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Length of Average Skip
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