Fast String Searching

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

The Problem

One of the classic problems in computing is
string searching: find the first occurrence
of one character string (“the pattern™) in
another (“the text").

Generally, the text is very large (e.g.,
gigabytes) but the patterns are relatively
small.

Examples

Find the word “comedy” In this NY Times
article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...

AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA
AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC
TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA
AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA
AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT
TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA
AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT
CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA
TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA
AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT
TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT
TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA
AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA
CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA
AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA
ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT
AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA
AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG

T File Edit Miew Go Bookmarks Tools Window Help

Norton AntiVirus 2006 :; Download or Physical Shipment - Mozilla

Back Farward i

. FastE

File Edit Miew Go Bo

xact String Pattern-matching Algorithms Adapted to the Characteristics of the Medical Language - Mozilla
okmarks Tools Window Help

v} <% Home | ﬁauukmarks 4Imernel &jLUUkup @NEW&CUUI # Google

9 symantec.

Home & Home Office T ——

Home & Home ¢
PI'(_ODI.IF_\'S .

. Software
> Internet Security
s Virus Protection
> Problem-Solving
i » Communications
> Macintosh

Norton

AntiVirus™ 2

Newest version
Stay protected wi

Applying Fast String Matching to Intrusion Detec|
Eile Edit ¥ew Go Bookmarks Tools Window Help

Back Fonward

@ b @ X @ @ \t hitpstvewnss stormingmeddia, us/ G666

" “ % Home ! ggaunkmarks llniemet @Lnukup E.NEW&CDEII 4 Google

jfor‘f?ﬁ-ﬂg A/Iedz-g Penragon Reports: Fast. Definitive. Comy

Home AboutUs ContactUs View Cart My Accoun

Back Fonward

@ ir Q % @ @ | nitpfrunin pubmedzentral.nin.gowsarticlerender fogi7 arid=61442 [V] |22 searct

W Detection and Countermeasures -

Abstract

nFull Text

Flgures and Tables
PLF (275K)
Contents

Archive

Related material:

PLbMed related arts =]

PubMed articles by:
Lovis, C.

|| Baud, R,

Top

nAbstract
Motation
Morphologic
Characteristics of
Wedical Language
Search Algorithms
Measures

Results
Conclusion
References

Hama | 4Bookmarks ¢ Internat [(fLaokip (fNewsCanl ¢ Google

el JAMIA

Joural st The Journal of the American Medical informatics Association

Journal List > J Am Med Inform Assoc > v.7{4); Jul-Aug 2000
J Am Med Inform Assoc, 2000 Jul-Aug; 7(4); 378-391,
Copyright € 2000, American Medical Informatics Association

Fast Exact String Pattern-matching Algorithms Adapted to the Characteristics
of the Medical Language

Christian Lovis, MD and Robert H. Baud, PhDD

5 Affiliations of the authors: Puget Sound Health Care System, Seattle, Washington (CL); University
= Hospital of Geneva, Geneva, Swritzerland (RHB).

Correspondence and reprints: Christian Lovis, MD, University Hospital of Geneva, Division of
IMedical Informatics, Rue Micheli-du-Crest, CH-1211 Geneva 4, Switzerland; e-mail:
<christian, lovis@dim heuge.chs,

0SS LWIB| pEj

Received October 26, 199%; Accepted February 16, 2000.

Ohjective: The authers consider the problem of exact string pattern matching using algorithms that
do not require any preprocessing. To choose the most appropriate algorithm, distinctive features of
the medical language must be taken info account. The characteristics of medical language are
emphasized in this regard, the best algorithm of those reviewed is proposed, and detailed

- evaluations of time complexzity for processing medical texts are provided.

Design: The authors first illustrate and discuss the technigues of various string pattern-matching
algorithms, Next, the source code and the behavior of representative exact string pattern-matching
algorithms are presented in a comprehensive manner to promote their implementation, Detailed
explanations of the use of various techniques to improve performance are given.

JO3S LUDJU| Paj) Wy

Measurements: Real-time measures of time complexity with English medical tezts are presented.
They lead to results distinet from those found in the computer science literature, which are
typically computed with normally distributed texts,

T Horspool algorithm achieves the best overall results when used with
medical texts. This algorithm usually performs at least twice as fast as the other algorithms tested.

Ads by

%&lﬁ Applying Fast String Matching to Intrus
Attack Authors: Mike Fisk, George Varghese; LOJ
Cetection

Reall time Abstract: The performance of signature-b
monitoring for detection tools Is dominated by the sfring
suspicious ;)

activity - many signatures, In this paper we study h
whatever detection system Snort can be bast optim|
network spesd matehing algorithms, We analyze the perf
i M. m ; ! i

Intrusion string matching algorithm, |

Protection? algorithms. The performance of signature-b
Slop atlacks detection tools is dominated by the string
befora serious ; ;

harm! Robust many signatures. [n this paper we study hi

% E 2 BB @B |

IPS for secure detection system Snort can be best optimized to utlize different siing wish to order, H_

Variants of the problem allow wildcards in
the pattern and/or the text. Exact
matching is when no wildcards are allowed.

We describe the fastest sequential
algorithm for solving the exact string
searching problem. The algorithm is called
the Boyer-Moore fast string searching
algorithm.

Example

Find the word “comedy” In this NY Times
article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JANNEEEEENNEEEEENED

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

HCEENEENNNRNNNENEED

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

AE<ENNENENNNENEEEEE

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEERNRRREANC

O

M

E

D

Y

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

JOKE ON THE COMEDY

COMEDY

C

O

ME

D

Y

Key Property: The longer the pattern, the

faster the search!

Pre-Computing the Skip Distance

pat: 543210
COMEDY
txt: xXXXXOXXXXXXXXXXX. ..

1

A6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C b H 6 M 3 R 6 W 6
D1 I6 N 6 S 6 X 6
E 2 J 6 04 T 6 Y O

Z 6

This i1s a 1-dimensional array, skiplc], as
big as the alphabet.

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

G [[[[{]]]

JOKE ON THE COMEDY

skiplc]:

A6
B 6
C b5
D1
E 2

F 6
G 6
H 6
16
J 6

K 6
L 6
M3
N 6
0 4

P 6
Q 6
R 6
S 6
T 6

U 6
V 6
W 6
X 6
Y O
Z 6

COMEDY

G [[[[{]]]

JOKE ON THE COMEDY

skiplc]:

A6
B 6
C b5
D1
E 2

F 6
G 6
H 6
16
J 6

K 6
L 6
M3
N 6
0 4

P 6
Q 6
R 6
S 6
T 6

U 6
V 6
W 6
X 6
Y O
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

JOKE ON THE COMEDY

skiplc]:

A6
B 6
C b5
D1
E 2

F 6
G 6
H 6
16
J 6

K 6
L 6
M3
N 6
0 4

P 6
Q 6
R 6
S 6
T 6

U 6
V 6
W 6
X 6
Y O
Z 6

COMEDY

C

O

ME

D

Y

But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ——————

44

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ——————————- R-—————————

45

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- A

46

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P————————————

47

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P————————————

Slide 2 to match the discovered character.

48

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PP ?——————

49

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- PAR—————————-

50

But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ——————

51

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ———————————- R——————————

52

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- AR

53

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PAR

54

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PAR

55

But Wait! There’s More!

pat: NONPARTIPULAR

Slide 7 to match the discovered substring!

56

i |pat]
||
pat: NONPARTIPULAR

txt: —————————-— PAR-—-———————-—

dt: txtl[i] patlj+1] ... patl|pat|]

P A R

57

dt: txtli] patlj+1] ... patl|pat|]

dt can be computed given txt[i] and index
7 In pat!

There are only |a| X |pat| combinations,
where |a| is the alphabet size.

58

The Skip Distance — Delta

Given pat, the skip can be pre-computed
for every combination of character read, c,
and pattern index, 7, by finding how far we
must slide to find the /ast occurrence of dt
In pat.

59

pat: NONPARTIPULAR
txt: ———————- PAR

60

NONPARTIPULAR

61

pat: BC-ABC-BBC-CBC
txt: —————————- BBC

62

BC-ABC-BBC-CBC

63

pat: BC-ABC-BBC-CBC
txt: ——————————- ABC

64

BC-ABC-BBC-CBC

65

pat: BC-ABC-BBC-CBC
txt: —————————- DBC

66

BC-ABC-BBC-CBC

67

pat: EE-ABC-BBC-CBC
txt: —————————- DBC

68

EE-ABC-BBC-CBC

69

The Delta Array

deltalc,j| is an array of size |a| x |pat]
that gives the skip distance when a
mismatch occurs after comparing ¢ from
txt to pat|j].

70

The Algorithm

fast (pat, txt)

If pat = ""
then
If txt = ""
then return Not-Found;
else return 0; end;
end;

71

preprocess pat to produce delta;

j = |pat| —1;
L=)

72

while (0 < 7 A @ < |tot))
do
If pat|j] = tat|i]

then

1 =1 — 1;

g =7—-1;

else

i := 1+ deltaltxt[i], j];
j = |pat| — 1;

end;

73

If (7 <0)
then return 7+ 1;
else return Not-Found; end;

end;

74

Performance
How does the algorithm perform?

This depends on the size of the alphabet.
We only have data on English text right
now.

In our test:

txt: English text of length 177,985.

75

pat: 100 randomly chosen patterns of
length 5 — 30, chosen from another English
text and filtered so they do not occur in
the search text.

The naive string searching algorithm would
look at all 177,985 characters of the search
text. In fact, it would look at some
characters more than once.

76

Number of Characters Read from Text

45000

40000

35000

30000

25000

20000

15000

10000

Pattern Length vs. Number of Characters Read from Text

.....MMMMM_

o E

© E

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pattern Length

7

Length of Average Skip

16

14

12

10

Pattern Length vs. Length of Average Skip

LU

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pattern Length

th !
5 6 7 8 9

