
2006 – 2007
Student Activity Conference

1CS Intro and Update

Computer Science

Advanced Computer Science Topics
Mike Scott

Contest Director

For all coaches and contestants.

2006 – 2007
Student Activity Conference

2CS Intro and Update

Topics

• Interesting Examples of CS
– intersection control
– robot soccer
– suspended particle explosions

• Algorithm Analysis and Big O
• Anything you want to cover

2006 – 2007
Student Activity Conference

3CS Intro and Update

A Brief Look at Computer
Science

• The UIL CS contest emphasizes programming
• Most introductory CS classes, both at the high

school and college level, teach programming
• … and yet, computer science and computer

programming are not the same thing!
• So what is Computer Science?

2006 – 2007
Student Activity Conference

4CS Intro and Update

What is Computer Science?
• Poorly named in the first place.
• It is not so much about the computer

as it is about Computation.
• “Computer Science is more the study

of managing and processing
information than it is the study of
computers.”

-Owen Astrachan, Duke University

2006 – 2007
Student Activity Conference

5CS Intro and Update

So why Study Programming?

• Generally the first thing that is studied in
Chemistry is stoichiometry.
– Why? It is a skill necessary in order to study

more advanced topics in Chemistry
• The same is true of programming and

computer science.

2006 – 2007
Student Activity Conference

6CS Intro and Update

What do Computer Scientists
do?

• Computer Scientists solve problems
– creation of algorithms

• Three examples
– Kurt Dresner, Intersection Control
– Austin Villa, Robot Soccer
– Okan Arikan, playing with fire

2006 – 2007
Student Activity Conference

7CS Intro and Update

What do Computer Scientists
do?

• Computer Scientists solve problems
– creation of algorithms

• Three examples
– Kurt Dresner, Intersection Control
– Austin Villa, Robot Soccer
– Okan Arikan, playing with fire

2006 – 2007
Student Activity Conference

8CS Intro and Update

Kurt Dresner – Intersection Control

• PhD student in UTCS
department

• area of interest artificial
intelligence

• Multiagent Traffic Management: A
Reservation-Based Intersection
Control Mechanism
– how will intersections work if and when

cars are autonomous?

2006 – 2007
Student Activity Conference

9CS Intro and Update

Traditional Stoplight

stop sign

2006 – 2007
Student Activity Conference

10CS Intro and Update

Reservation System

3 lanes

6 lanes

2006 – 2007
Student Activity Conference

11CS Intro and Update

Austin Villa – Robot Soccer
• Multiple Autonomous Agents
• Get a bunch of Sony Aibo robots

to play soccer
• Problems:

– vision (is that the ball?)
– localization (Where am I?)
– locomotion (I want to be there!)
– coordination (I am open! pass me

the ball!)
• Video

2006 – 2007
Student Activity Conference

12CS Intro and Update

Okan Arikan – Playing with Fire

• There are some things in
computer graphics that are
“hard”
– fire, water, hair, smoke
– “Animating Suspended Particle

Explosions”
– “Pushing People Around”

2006 – 2007
Student Activity Conference

13CS Intro and Update

Algorithmic Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning
(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,
often with the result that the code becomes
incomprehensible."
- The Hackers Dictionary, version 4.4.7

2006 – 2007
Student Activity Conference

14CS Intro and Update

Is This Algorithm Fast?

• Problem: given a problem, how fast does this
code solve that problem?

• Could try to measure the time it takes, but that is
subject to lots of errors
– multitasking operating system
– speed of computer
– language solution is written in

• "My program finds all the primes between 2 and
1,000,000,000 in 1.37 seconds."
– how good is this solution?

2006 – 2007
Student Activity Conference

15CS Intro and Update

Grading Algorithms

• What we need is some way to grade algorithms
and their representation via computer programs
for efficiency
– both time and space efficiency are concerns
– are examples simply deal with time, not space

• The grades used to characterize the algorithm
and code should be independent of platform,
language, and compiler
– We will look at Java examples as opposed to

pseudocode algorithms

2006 – 2007
Student Activity Conference

16CS Intro and Update

Big O

• The most common method and notation for
discussing the execution time of algorithms is
"Big O"

• Big O is the asymptotic execution time of the
algorithm

• Big O is an upper bounds
• It is a mathematical tool
• Hide a lot of unimportant details by assigning a

simple grade (function) to algorithms

2006 – 2007
Student Activity Conference

17CS Intro and Update

Typical Functions Big O Functions

Constant1

Logarithmiclog N

Root - nN

LinearN

N log NN log N

N Square root NN N

QuadraticN2

CubicN3

PolynomialNd, d > 3

Exponential2N

factorialN!

Common NameFunction

2006 – 2007
Student Activity Conference

18CS Intro and Update

Big O Functions

• N is the size of the data set.
• The functions do not include less dominant

terms and do not include any coefficients.
• 4N2 + 10N – 100 is not a valid F(N).

– It would simply be O(N^2)
• It is possible to have two independent variables

in the Big O funciton.
– example O(M + log N)
– M and N are sizes of two different, but interacting data

sets

2006 – 2007
Student Activity Conference

19CS Intro and Update

Actual vs. Big O

Amount of data

Time
for
algorithm
to
complete

Actual

Simplified

2006 – 2007
Student Activity Conference

20CS Intro and Update

Formal Definition of Big O
• T(N) is O(F(N)) if there are positive constants

c and N0 such that T(N) < cF(N) when N > N0
– N is the size of the data set the algorithm works on
– T(N) is a function that characterizes the actual

running time of the algorithm
– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big functions table)

– c and N0 are constants

2006 – 2007
Student Activity Conference

21CS Intro and Update

What it Means

• T(N) is the actual growth rate of the algorithm
– can be equated to the number of executable

statements in a program or chunk of code
• F(N) is the function that bounds the growth rate

– may be upper or lower bound
• T(N) may not necessarily equal F(N)

– constants and lesser terms ignored because it is a
bounding function

2006 – 2007
Student Activity Conference

22CS Intro and Update

Yuck
• How do you apply the definition?
• Hard to measure time without running programs and that

is full of inaccuracies
• Amount of time to complete should be directly

proportional to the number of statements executed for a
given amount of data

• count up statements in a program or method or algorithm
as a function of the amount of data

• traditionally the amount of data is signified by the
variable N

2006 – 2007
Student Activity Conference

23CS Intro and Update

Counting Statements in Code

• So what constitutes a statement?
• Can’t I rewrite code and get a different

answer, that is a different number of
statements?

• Yes, but the beauty of Big O is, in the end
you get the same answer
– remember, it is a simplification

2006 – 2007
Student Activity Conference

24CS Intro and Update

Assumptions in For Counting Statements

• Accessing the value of a primitive is constant time. This is one
statement:
x = y; //one statement

• mathematical operations and comparisons in boolean
expressions are all constant time.
x = y * 5 + z % 3; // one statement

• if statement constant time if test and maximum time for each
alternative are constants
if(iMySuit == DIAMONDS || iMySuit == HEARTS)

return RED;
else

return BLACK;
// 2 statements (boolean expression + 1 return)

2006 – 2007
Student Activity Conference

25CS Intro and Update

Convenience Loops
// mat is a 2d array of booleans
int numThings = 0;
for(int r = row - 1; r <= row + 1; r++)

for(int c = col - 1; c <= col + 1; c++)
if(mat[r][c])

numThings++;

This piece of code turn out to be constant time
not O(N^2).

2006 – 2007
Student Activity Conference

26CS Intro and Update

It is Not Just Counting Loops
// Example from previous slide could be
// rewritten as follows:
int numThings = 0;
if(mat[r-1][c-1]) numThings++;
if(mat[r-1][c]) numThings++;
if(mat[r-1][c+1]) numThings++;
if(mat[r][c-1]) numThings++;
if(mat[r][c]) numThings++;
if(mat[r][c+1]) numThings++;
if(mat[r+1][c-1]) numThings++;
if(mat[r+1][c]) numThings++;
if(mat[r+1][c+1]) numThings++;

2006 – 2007
Student Activity Conference

27CS Intro and Update

Dealing with Other Methods
// Card.Clubs = 2, Card.Spades = 4
// Card.TWO = 0. Card.ACE = 12
for(int suit = Card.CLUBS; suit <= Card.SPADES; suit++)
{ for(int value = Card.TWO; value <= Card.ACE; value++)

{ myCards[cardNum] = new Card(value, suit);
cardNum++;

}
}

How many statement is
myCards[cardNum] = new Card(value, suit);

???

2006 – 2007
Student Activity Conference

28CS Intro and Update

Dealing with other methods

• What do I do about the method call
Card(value, suit) ?

• Long way
– go to that method or constructor and count

statements
• Short way

– substitute the simplified Big O function for that
method.

– if Card(int, int) is constant time, O(1), simply count
that as 1 statement.

2006 – 2007
Student Activity Conference

29CS Intro and Update

Loops That Work on a Data Set
• Loops like the previous slide are fairly rare
• Normally loop operates on a data set which can

vary is size
4The number of executions of the loop depends

on the length of the array, values.

4How many many statements are executed by
the above method
4N = values.length. What is T(N)? F(N)

public int total(int[] values)
{ int result = 0;

for(int i = 0; i < values.length; i++)
result += values[i];

return total;
}

2006 – 2007
Student Activity Conference

30CS Intro and Update

Counting Up Statements

• int result = 0; 1 time
• int i = 0; 1 time
• i < values.length; N + 1 times
• i++ N times
• result += values[i]; N times
• return total; 1 time
• T(N) = 3N + 4
• F(N) = N
• Big O = O(N)

2006 – 2007
Student Activity Conference

31CS Intro and Update

Showing O(N) is Correct

• Recall the formal definition of Big O
– T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)
• In our case given T(N) = 3N + 4, prove the

method is O(N).
– F(N) is N

• We need to choose constants c and N0

• how about c = 4, N0 = 5 ?

2006 – 2007
Student Activity Conference

32CS Intro and Update

horizontal axis: N, number of elements in data set

vertical axis: time for algorithm to complete. (approximate with
number of executable statements)

T(N), actual function of time.
In this case 3N + 4

F(N), approximate function
of time. In this case N

No = 5

c * F(N), in this case,
c = 4, c * F(N) = 4N

2006 – 2007
Student Activity Conference

33CS Intro and Update

Sidetrack, the logarithm
• Thanks to Dr. Math
• 32 = 9
• likewise log3 9 = 2

– "The log to the base 3 of 9 is 2."
• The way to think about log is:

– "the log to the base x of y is the number you can
raise x to to get y."

– Say to yourself "The log is the exponent." (and say
it over and over until you believe)

– In CS we work with base 2 logs, a lot
• log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

2006 – 2007
Student Activity Conference

34CS Intro and Update

When Do Logarithms Occur
• Algorithms have a logarithmic term when

they use a divide and conquer technique
• the data set keeps getting divided by 2
public int foo(int n)
{ // pre n > 0

int total = 0;
while(n > 0)
{ n = n / 2;

total++;
}
return total;

}

2006 – 2007
Student Activity Conference

35CS Intro and Update

Quantifiers on Big O
• It is often useful to discuss different cases for

an algorithm
• Best Case: what is the best we can hope for?

– least interesting
• Average Case: what usually happens with the

algorithm?
• Worst Case: what is the worst we can expect

of the algorithm?
– very interesting to compare this to the average case

2006 – 2007
Student Activity Conference

36CS Intro and Update

Best, Average, Worst Case
• To Determine the best, average, and worst case

Big O we must make assumptions about the
data set

• Best case -> what are the properties of the data set that
will lead to the fewest number of executable statements
(steps in the algorithm)

• Worst case -> what are the properties of the data set that
will lead to the largest number of executable statements

• Average case -> Usually this means assuming the data
is randomly distributed
– or if I ran the algorithm a large number of times with different sets of

data what would the average amount of work be for those runs?

2006 – 2007
Student Activity Conference

37CS Intro and Update

public double minimum(double[] values)
{ int n = values.length;

double minValue = values[0];
for(int i = 1; i < n; i++)

if(values[i] < minValue)
minValue = values[i];

return minValue;
}

Another Example

• T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

• If no other information, assume asking average case

2006 – 2007
Student Activity Conference

38CS Intro and Update

Nested Loops

• Number of executable statements, T(N)?
• Appropriate F(N)?
• Big O?

public Matrix add(Matrix rhs)
{ Matrix sum = new Matrix(numRows(), numCols(), 0);

for(int row = 0; row < numRows(); row++)
for(int col = 0; col < numCols(); col++)

sum.myMatrix[row][col] = myMatrix[row][col]
+ rhs.myMatrix[row][col];

return sum;
}

2006 – 2007
Student Activity Conference

39CS Intro and Update

Another Nested Loops Example

• Number of statements executed, T(N)?

public void selectionSort(double[] data)
{ int n = data.length;

int min;
double temp;
for(int i = 0; i < n; i++)
{ min = i;

for(int j = i+1; j < n; j++)
if(data[j] < data[min])

min = j;
temp = data[i];
data[i] = data[min];
data[min] = temp;

}// end of outer loop, i
}

2006 – 2007
Student Activity Conference

40CS Intro and Update

Some helpful mathematics

• 1 + 2 + 3 + 4 + … + N
– N(N+1)/2 = N2/2 + N/2 is O(N2)

• N + N + N + …. + N (total of N times)
– N*N = N2 which is O(N2)

• 1 + 2 + 4 + … + 2N

– 2N+1 – 1 = 2 x 2N – 1 which is O(2N)

2006 – 2007
Student Activity Conference

41CS Intro and Update

One More Example
public int foo(int[] list){

int total = 0;
for(int i = 0; i < list.length; i++){

total += countDups(list[i], list);
}
return total;

}
// method countDups is O(N) where N is the
// length of the array it is passed

What is the Big O of foo?

2006 – 2007
Student Activity Conference

42CS Intro and Update

Summing Executable Statements
• If an algorithms execution time is N2 + N

the it is said to have O(N2) execution time
not
O(N2 + N)

• When adding algorithmic complexities the
larger value dominates

• formally a function f(N) dominates a
function g(N) if there exists a constant
value n0 such that for all values N > N0 it
is the case that g(N) < f(N)

2006 – 2007
Student Activity Conference

43CS Intro and Update

Example of Dominance
• Look at an extreme example. Assume the

actual number as a function of the amount
of data is:

N2/10000 + 2Nlog10 N+ 100000
• Is it plausible to say the N2 term dominates

even though it is divided by 10000 and
that the algorithm is O(N2)?

• What if we separate the equation into
(N2/10000) and (2N log10 N + 100000) and
graph the results.

2006 – 2007
Student Activity Conference

44CS Intro and Update

Summing Execution Times

• For large values of N the N2 term dominates so
the algorithm is O(N2)

• When does it make sense to use a computer?

red line is
2Nlog10 N + 100000

blue line is
N2/10000

2006 – 2007
Student Activity Conference

45CS Intro and Update

Comparing Grades
• Assume we have a problem to be solved
• Algorithm A solves the problem correctly and is

O(N2)
• Algorithm B solves the same problem correctly

and is O(N log2N)
• Which algorithm is faster?
• One of the assumptions of Big O is that the data

set is large.
• The "grades" should be accurate tools if this is

true

2006 – 2007
Student Activity Conference

46CS Intro and Update

Running Times
• Assume N = 100,000 and processor speed

is 1,000,000,000 operations per second

3171 yearsN4

1.2 x 10-8 secondslog N
3.2 x 10-7 secondsN
0.0001 secondsN
0.0017 secondsN log N
0.032 secondsN N
10 secondsN2

11.6 daysN3

3.2 x 1030086 years2N

Running TimeFunction

2006 – 2007
Student Activity Conference

47CS Intro and Update

Reasoning about algorithms
• We have an O(n) algorithm,

– For 5,000 elements takes 3.2 seconds
– For 10,000 elements takes 6.4 seconds
– For 15,000 elements takes ….?
– For 20,000 elements takes ….?

• We have an O(n2) algorithm
– For 5,000 elements takes 2.4 seconds
– For 10,000 elements takes 9.6 seconds
– For 15,000 elements takes …?
– For 20,000 elements takes …?

2006 – 2007
Student Activity Conference

48CS Intro and Update

109 instructions/sec, runtimes

31.7 years30 seconds1.0 second0.0000000301,000,000,000

16.7 minutes0.01990.0010.0000000201,000,000

10 seconds0.0016610000.000100000.000000017100,000

0.1 min0.0001329000.000010000.00000001310,000

0.0010.0000100000.000001000.0000000101,000

0.00010000.0000006640.000000100.000000007100

0.00000010.0000000330.000000010.00000000310

O(N2)O(N log N)O(N)O(log N)N

2006 – 2007
Student Activity Conference

49CS Intro and Update

When to Teach Big O?

• In a second programming course (like APCS
AB) curriculum do it early!

• A valuable tool for reasoning about data
structures and which implementation is better for
certain operations

• Don’t memorize things!
– ArrayList add(int index, Object x) is O(N)

where N is the number of elements in the ArrayList
– If you implement an array based list and write similar

code you will learn and remember WHY it is O(N)

2006 – 2007
Student Activity Conference

50CS Intro and Update

Formal Definition of Big O (repeated)

• T(N) is O(F(N)) if there are positive constants
c and N0 such that T(N) < cF(N) when N > N0
– N is the size of the data set the algorithm works on
– T(N) is a function that characterizes the actual

running time of the algorithm
– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithm

– c and N0 are constants

2006 – 2007
Student Activity Conference

51CS Intro and Update

More on the Formal Definition
• There is a point N0 such that for all values of N

that are past this point, T(N) is bounded by some
multiple of F(N)

• Thus if T(N) of the algorithm is O(N^2) then,
ignoring constants, at some point we can bound
the running time by a quadratic function.

• given a linear algorithm it is technically correct to
say the running time is O(N ^ 2). O(N) is a more
precise answer as to the Big O of the linear
algorithm
– thus the caveat “pick the most restrictive function” in

Big O type questions.

2006 – 2007
Student Activity Conference

52CS Intro and Update

What it All Means

• T(N) is the actual growth rate of the algorithm
– can be equated to the number of executable

statements in a program or chunk of code
• F(N) is the function that bounds the growth rate

– may be upper or lower bound
• T(N) may not necessarily equal F(N)

– constants and lesser terms ignored because it is a
bounding function

2006 – 2007
Student Activity Conference

53CS Intro and Update

Other Algorithmic Analysis Tools

• Big Omega T(N) is Ω(F(N)) if there are positive
constants c and N0 such that
T(N) > cF(N)) when N > N0
– Big O is similar to less than or equal, an upper

bounds
– Big Omega is similar to greater than or equal, a lower

bound
• Big Theta T(N) is θ(F(N)) if and only if T(N) is

O(F(N))and T(N) is Ω(F(N)).
– Big Theta is similar to equals

2006 – 2007
Student Activity Conference

54CS Intro and Update

Relative Rates of Growth

T(N) = θ(F(N))

T(N) = Ω(F(N))

T(N) = O(F(N))

Mathematical
Expression

T(N) = F(N)Big θ

T(N) > F(N)Big Ω

T(N) < F(N)Big O

Relative Rates
of Growth

Analysis
Type

"In spite of the additional precision offered by Big Theta,
Big O is more commonly used, except by researchers
in the algorithms analysis field" - Mark Weiss

2006 – 2007
Student Activity Conference

55CS Intro and Update

Big O Space

• Less frequent in early analysis, but just as
important are the space requirements.

• Big O could be used to specify how much
space is needed for a particular algorithm

