
UTCS High School Programming Contest 2013 Page 1

University of Texas at Austin - High School Computer Science Contest
Problems by Jaime Rivera, Moises Holguin, and Mike Scott

General Notes:

1. Do the problems in any order you like.

2. For problems that read from a data file: When the program is judged, the data file will be
in the same directory as your program. Do not include any extraneous path information in
your program, just the name of the data file. Data file names are case sensitive. If you do
not use the correct file name as listed in the question your program may be judged as an
incorrect submission.

3. Submit your source code, the .java file, for judging via the PC^2 software. File names are
case sensitive. If you do not use the correct file name for the Java file your submission
may be graded as incorrect submission.

4. All problems are worth 60 points. Incorrect submissions receive a deduction of 5 points,
but ONLY if the problem is ultimately judged correct. Problems may be reworked and
resubmitted as many times as you like.

5. There is no extraneous input. All input is exactly as specified in the problem. Integer
input will not have leading zeros unless specified by the problem.

6. Your program shall not print extraneous output. Follow the format exactly as given in the
problem statement and as shown in example output.

7. The time limit for problems is 120 seconds. If the program has not terminated after 120
seconds on the judge's computer, the program will be judged as an incorrect submission.

Number Problem Name
1 Chuck

2 Count

3 Cubes

4 Dimensions

5 Goals

6 Grade
7 Majority

8 Optimal

9 Rebate

10 Royal

11 Tunnels

12 Us

UTCS High School Programming Contest 2013 Page 2

1. Seventy-Three is the Chuck Norris of Numbers

Program Name: Chuck.java Input File: chuck.dat

From The Big Bang Theory - The Alien Parasite Hypothesis episode:

Sheldon: What is the best number? By the way, there's only one correct answer.
Raj: 5,318,008?
Sheldon: Wrong! The best number is 73. [Short silence] You're probably wondering why.
Leonard & Howard: No no, we're good.
Sheldon: 73, is the 21st prime number, its mirror 37 is the 12th and its mirror 21 is the product
of multiplying, hang on to your hats, 7 and 3. Did I lie?
Leonard: We get it! 73 is the... Chuck Norris of numbers!
Sheldon: Chuck Norris wishes! In binary, 73 is a palindrome, 1001001, which backwards is
1001001, exactly the same. All "Chuck Norris" gets you backwards is "Sirron Kcuhc"!

Write a program that finds how many of the representations of a given number in the bases from
2 to 16 are palindromes.

A palindrome is a word, phrase, or sequence that reads the same backwards and forwards. In
your case, you will be looking for numbers that are palindromic, such as 12321.

Base conversions of 7310 from binary (base 2) to hexadecimal (Base 16)

Base 2: 1001001
Base 3: 2201
Base 4: 1021
Base 5: 243
Base 6: 201
Base 7: 133
Base 8: 111
Base 9: 81
Base 10: 73
Base 11: 67
Base 12: 61
Base 13: 58
Base 14: 53
Base 15: 4d
Base 16: 49

7310 has two palindromic representation in bases 2 to 16, 10010012. and 1118.
 Leading zeros may NOT be added to make a number a palindrome. For example 10, is not a
palindrome.

Input

 The first line contains a single integer N that indicates the number of data sets.

 Each data set consists of a single integer x such that 0 <= x <= 2,000,000,000

Output
For each data set print out the number representations of X in bases 2 to 16 that are palindromic.

UTCS High School Programming Contest 2013 Page 3

Example Input File
5

73

17

532

329

29
1

Example Output To Screen
2

3

1

0

1

UTCS High School Programming Contest 2013 Page 4

2. Count Them Up

Program Name: Count.java Input File: count.dat

Did you ever wonder how many different ways there were to pick a 1

st
, 2

nd
, and 3

rd
 place winner

out of 10 runners? Ever want to know how many different possible hands of poker there are? If
you want to figure out how many different groups of 6 you can make from a group of 30 people,
you need to learn how to count using combinations and permutations.

A permutation is one of the different arrangements of a group of items where order matters. In
other words the arrangement (a, b) is distinct from the arrangement (b, a). The following formula
is used to calculate the number of permutations given n total elements and choosing r of them to
be in a given permutation:

A combination is one of the different arrangements of a group of items where order does not
matter. In other words the arrangement (a, b) is equivalent to the arrangement (b, a). The
following formula is used to calculate the number of combinations given n total elements and
choosing r of them to be in a given combination:

Write a program to calculate the number of different combinations or permutations given
different values of n and r.

Input

 The first line of the data set is a number M that indicates the number of data sets.

 Each line contains a number 1 ≤ n ≤ 60, followed by either a P or C, then a second
number 0 ≤ r ≤ 60. You are guaranteed r ≤ n. No spaces will be present in a data set.

 nPr is to be read as “n pick r”. Calculate the number of permutations.

 nCr is to be read as “n choose r”. Calculate the number of combinations.

Output
Display the number of different combinations or permutations there are for each data set, one
line of output per dataset.

UTCS High School Programming Contest 2013 Page 5

Example Input File

6

16C3

10P2

25C13

30P4

60P10

60C10

Example Output To Screen

560

90

5200300

657720

273589847231500800

75394027566

UTCS High School Programming Contest 2013 Page 6

3. Cubes! Don't Assemble!!

Program Name: Cubes.java Input File: cubes.dat

Captain America has just defeated The Red Skull, and recovered a cache of powerful, but
unstable power cubes. Each power cube contains an amount of dark energy. Cap has to get the
power cubes back to the authorities in steel boxes. Problem is if a set of three cubes is placed in
the same box and the sum of the energy of two of the cubes equals the energy of a third cube,
then the set becomes unstable and explodes. The amount of dark in each cube is always an
integer greater than 0.

For example cubes with energies equal to 1, 2, and 3 cannot be placed in the same box because
1 + 2 = 3. The minimum number of boxes Cap must use in this instance is 2, in order to keep
those three cubes from exploding.

Another example: Cubes with energies 10, 10, 13, 16, and 19 could all go in a single box because
there is no pair of cubes whose energies sum to one of the other cubes. Likewise, cubes with
energies 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, and 1, can all go in the same box.

Only triples that are unstable. Three cubes whose energies sum to a fourth cube's energy can be
placed in the same box. Examples, cubes with energies 2, 2, 2, and 6 can be placed in the same
box even though 2 + 2 + 2 = 6.

The boxes are large enough that if no deadly triples exits, all the cubes can be placed in a single
box.

Input

 The first line of the data set is a number N that indicates the number of data sets.

 Each data set is a series of integers on a single line separated by spaces indicating the
energy of the cubes in that data set.

 All cube energies C will have values such that 0 < C < 2,000,000,000

Output
For each data set display the minimum number of boxes Cap must use to transport the cubes
such that no deadly triples exist in the same box.

Example Input File (Note, the last data set is wrapped on this page, but will be on
a single line in the actual input file.)
8

1 2 3

1 2 3 1 2 3

10 10 13 16 19

1 1 1 1 1 1 1 1 1 1 1

1 3 5 7 9 3 5 19

2 2 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

UTCS High School Programming Contest 2013 Page 7

Example Output To Screen

2

2

1

1

1

1

3

4

UTCS High School Programming Contest 2013 Page 8

4. Missing Dimensions

Program Name: Dimensions.java Input File: dimensions.dat

UTCS has a new building! The move took place last week. During the move all the equipment and box
dimension data was lost. In order to make everything fit in the new building, we need to recover the
dimension data; Some data still remains, if we can recover it. The data is just a bit cluttered.

The dimensions for each piece of equipment and box has the following form: AxBxC where A,
B, and C are integers, floating point numbers, or numbers in exponential form. Spaces and tabs
may be present between the numbers and the separators. (x's). Separators may be upper or lower
case x's.

Floating point numbers will have a digit before the decimal point. Numbers in exponential form

have the following format: X.YeZ, or X.YEZ, where X, Y, and Z are non-negative integers,
with one or more digits.

Input

 The first line contains a single integer N that indicates the number of data sets.

 Each data set will consist of single line of text, which may or may not contain a single

piece of dimensional data in the form AxBxC as described above.

Output
For each data set print, print out the dimension of the item in the given format with any
whitespace removed. Print all separators as lower case x's and all exponent e's as lower case e's.

If no dimension is present print NO DIMENSION FOUND.

Example Input File
10

1x-2X3

UTCS-Competition-Box-32x17x3-Prod#213

UPSPKG-SIZE8.11E27X 25.3329 x 16

Chocolate-xx-0.05x31x5xxxxX

No Dimension 32x32y32

xxx

-1X5.6231x14.100E10-

-1X5.6231x-14.100E10-

-1X 5.6231 x 14.100E10-

333X1 x 22 aj912dskljc nsdx123x112dss

Example Output To Screen
NO DIMENSION FOUND

32x17x3

8.11e27x25.3329x16

0.05x31x5

NO DIMENSION FOUND

NO DIMENSION FOUND
1x5.6231x14.100e10

NO DIMENSION FOUND

1x5.6231x14.100e10

333x1x22

UTCS High School Programming Contest 2013 Page 9

5. Anchorage or Bust

Program Name: Goals.java Input File: goals.dat

Texas 4000 for Cancer: (from Wikipedia)

"Texas 4000 was founded by Chris Condit in 2004, then a student at UT Austin, as a student
organization inspired by riders of the Hopkins 4K (4K for Cancer, Inc.). Diagnosed at age 11,
Condit himself is a Hodgkin's lymphoma survivor. He conceived Texas 4000 as a way to
continue the fight against cancer.

Each year a new group of almost 60 University of Texas at Austin students make a 70 day, 4,687
mile bike trek from the Texas campus in Austin, Texas to Anchorage, Alaska. Each rider meets
training and community service expectations as well as a $4,500 fundraising goal that goes
toward Texas 4000's mission of Hope, Knowledge and Charity from Austin to Anchorage. To
date, Texas 4000 has donated over $4 million to M.D. Anderson Cancer Center and the
American Cancer Society. "

Write a program to determine how many days it takes a cyclist to reach their first and second
mileage goals while training for the Texas 4000 and their average ride length while training.

Input

 The first line will contain a single integer N that indicates the number of data sets.

 Each data set consists of three lines

 The first line is a single integer that indicates the number of training rides a cyclist has
completed, M. M >= 0

 The second line will be M integers each separated by a single space. Each integer, R,
represents the number of miles a cyclist rode on a training ride. All R will be greater than
0.

 The third line will be two integers, G1 and G2, separated by a single space. 0 < G1 < G2.
G1 represents a cyclists first goal for total miles and G2 represents the same cyclists
second goal for total miles.

Output
For each data set print out a single line with three values: the number of training rides to meet or
exceed the first goal, the number of training rides to meet or exceed the second goal, and the
average number of miles ridden per training ride, truncated to the nearest integer. If a goal is not

met print out FAIL. If a rider completed 0 training rides print an average mileage of 0.

UTCS High School Programming Contest 2013 Page 10

Example Input File
5

0

50 100

3

25 30 34

30 40

7

25 30 25 30 25 40 50

50 100

1

1

10 20

10

25 25 30 50 50 100 100 40 50 30

130 500

Example Output To Screen
FAIL FAIL 0

2 2 29

2 4 32

FAIL FAIL 1

4 10 50

UTCS High School Programming Contest 2013 Page 11

6. Making the Grade

Program Name: Grade.java Input File: grade.dat

Many students stress about their grade, as the final exam gets closer. What do I need to make to
pass this class? Write a program to determine the minimum grade a student needs to make on
their final test to finish the class with an A, B, or C.

The grade formula for G, a student's grade in a course is:

Homework Percent*Homework Average + Quiz Percent*Quiz Average + Test Percent*Test Grade = G

The letter grade assigned is as follows: A (90 ≤ G ≤ 100), B (80 ≤ G < 90), C (70 ≤ G < 80).

Homework average is the average of the student's homework scores and quiz average is the
average of the students quiz score. Homework and quiz averages are computed as floating point
numbers. A student's final exam score must be between 0 and 100 inclusive.

Input

 The first line will contain a single integer N that indicates the number of data sets.

 Each data set will consist of exactly 4 lines.

 Line 1 will be the name of the student.

 Line 2 will be the 3 percentages Homework, Quiz, and Test, respectively, used to
calculate the final grade for the class. These will be integers all greater than or equal to
zero and the sum of the integers shall equal 100.

 Line 3 will be the Homework grade(s) of the student. There will be at least one. All
homework grades will be greater than or equal to 0 and less than or equal to 100.

 Line 4 will be the Quiz grade(s) of the student. There will be at least one. All quiz grades
will be greater than or equal to 0 and less than or equal to 100.

 spaces separate the integer values in the input file

Output
For each data set display the name of the student on a single line. Then print out 3 lines with the
desired grade, a tab, then the minimum grade needed on the final test to achieve the
corresponding letter grade. If it is not possible to earn that letter grade then print out SORRY.
When printing the necessary grade round any fractional scores up to the next integer. For
example if a student needs a 72.01 on the final test print the required score as 73.

UTCS High School Programming Contest 2013 Page 12

Example Input File:
3

Alex

30 30 40

100 100

100 100

Stacy

25 25 50

70 80 90

60 75 90

Susan

40 40 20

100 100 100 100 99

100 100 100 100 100 99

Example Output To Screen
Alex

A 75

B 50

C 25

Stacy

A SORRY

B 83

C 63

Susan

A 51

B 1

C 0

UTCS High School Programming Contest 2013 Page 13

7. Majority

Program Name: Majority.java Input File: majority.dat

Write a program to determine if a majority exists within a list of candidates. A majority exists
when a single candidate receives more than half of the total votes.

Input

 The first line will contain a single integer N that indicates the number of data sets.

 Each data set will consist of a single String, S, which represents the list of up to a million
votes.

 Each vote will be represented as a single character. Valid characters for candidates are
any non-whitespace ASCII character. Upper and lower case letters represent different
candidates.

 There will not be any spaces between characters and all characters will be on a single
line.

Output
For each data set, if there is a majority, print the character, which represents the majority;

otherwise, print NO MAJORITY.

Example Input File

5

AAAABCBC

DDDEEOO

BBBBBBBB

abba&*-aabbabbaaba*-281aaaaaaaAaaaaBBBaa

AAaa

Example Output To Screen

NO MAJORITY

NO MAJORITY

B

a

NO MAJORITY

UTCS High School Programming Contest 2013 Page 14

8. Optimal Prime

Program Name: Optimal.java Input File: optimal.dat

Unrelated to Optimus Prime, write a program to determine the number of primes that can be created by all
combinations of particular sequences of primes.

A sequence of primes within the range [0, 7]:
2, 3, 5, 7

A combination of sequences:

Sequence 1: 2, 3, 5, 7
Sequence 2: 11, 13

Combinations from the two sequences: 211, 213, 311, 313, 511, 513, 711, 713

A combination in this example is obtained by concatenating a prime number from sequence 1 to a unique

prime in sequence 2. Of those 8 numbers created from the 2 seque3nces, 3 are prime: [211, 311,
313]

The following can be done with more than 2 sequences.

Combination with 3 sequences:

Sequence 1: 2, 3, 5, 7
Sequence 2: 11, 13
Sequence 3: 5, 7, 11

Combinations: 2115, 2117, 21111, 2135, 2137, 21311, 3115, 3117, 31111, 3135, 3137, 31311, 5115,
5117, 51111, 5135, 5137, 51311, 7115, 7117, 71111, 7135, 7137, 71311

A prime from each sequence must be chosen. Recall the numbers are created by concatenating a number
from sequence 2 to the end of a number from sequence 1 and so forth. If a sequence does not contain any
primes between the upper and lower bounds, nothing is concatenated to the number for that sequence. If a

series of sequences does not yield any prime numbers the sequence is considered a NO PRIMES data set.

Input

 The first line will contain a single integer N that indicates the number of data sets.
0 < N < 100.

 Each data set will consist of an integer 0 < S < 10 that represents the number of
sequences for the data set.

 Each sequence will have 2 positive integers A and B (B >= A), which denote the range
[A, B] (A to B inclusive). A >= 2

 All values generated from sequences will be less than 2^31 - 1.

Output
For each data set print out the number of primes that exist within the combination formed by the

sequences of the data set. If there were no primes, print NO PRIMES.

UTCS High School Programming Contest 2013 Page 15

Example Input File

6

2

2 7

11 13

3

2 7

11 13

5 11

1

2 100

4

100 132

999 1500

2 3

5 10

3

2 10

102 108

55 56

2

8 9

8 9

Example Output To Screen

3

2

25

134

2

NO PRIMES

UTCS High School Programming Contest 2013 Page 16

9. Store Rebate

Program Name: Rebate.java Input File: rebate.dat

Buying books for classes can be very expensive especially on a college budget. Luckily, there is a new
store in town that offers rebates to customers. They are willing to give students 10% back on the total
amount a student spends at the store minus any returns the student makes. As a bonus, the store rounds
the rebate up to the nearest 5 dollars. Write a program to calculate how much money each students get
back in rebates.

Input

 The first line will contain a single integer N that indicates the number of data sets.

 Each data set will begin with the student’s name on a single line.

 The next line will have the number of transactions T the student made.

 The next T lines will be the transaction amounts. A positive number represents a purchase, while
a negative number represents a return. All values will have a leading digit (possibly a zero) and 2
decimal places. It is possible to have a return before any purchases. This is not necessarily a bad
data set.

Output
The name of the student followed by a space followed by the amount of their rebate. Do not include any

decimal places. If a student's returns exceed their purchases, print out BAD DATA.

Example Input File
4

Samantha

3

25.25

23.00

25.15

Josh

7

21.65

56.29

251.14

129.90

541.25

433.00

-56.29

Oscar

3

300.00

150.00

-150.00

John

2

-150.16

125.99

Example Output To Screen
Samantha 10

Josh 140

Oscar 30

John BAD DATA

UTCS High School Programming Contest 2013 Page 17

10. Honoring Coach Royal

Program Name: Royal.java Input File: NONE

Darrell K Royal passed away on November 7, 2012. D K Royal was the head coach of the Texas
Longhorns from 1957 to 1976. The Longhorns football teams play their home games in Darrell
K Royal–Texas Memorial Stadium, named after coach Royal since 1996.

Write a program to display a football field as shown below.

Input

 None

Output
Exactly as shown on the next page. There is no blank line before the first line of output.
There are no extra spaces at the end of lines. The last line is output with a newline.

UTCS High School Programming Contest 2013 Page 18

..#....#..

..#....#..

..######..

....#.....

....#.....

.\....\.

.\....\.

****10****

.\....\.

.\....\.

****20****

.\....\.

.\....\.

****30****

.\....\.

.\....\.

****40****

.\....\.

.\"DKR".

****50****

.\"DKR".

.\....\.

****40****

.\....\.

.\....\.

****30****

.\....\.

.\....\.

****20****

.\....\.

.\....\.

****10****

.\....\.

.\....\.

..#....#..

..#....#..

..######..

....#.....

....#.....

UTCS High School Programming Contest 2013 Page 19

11. Steam Tunnels

Program Name: Tunnels.java Input File: tunnels.dat

UT is a huge organization both in number of people and in physical size. The campus has its own
power plants and utilities because it is cheaper to run them independently rather than buy power
from the city of Austin. Part of the UT utility system is a network of steam tunnels that connects
buildings underground. Urban legends claim students go spelunking in these tunnels. Not an
advisable activity but CS students have always had an "affinity for disobedience."

Write a program that determines how many distinct parts exist in a given section of the steam
tunnel system. A steam tunnel section is described as follows:

G = {WEL,BUR,RLM,GTS,DEL,UTC,WCH},{WEL,BUR},{WEL,RLM},{GTS,DEL},
{BUR,RLM},{RLM,WEL},{GTS,DEL},{UTC,BUR}

The first set of brackets contains the buildings in the section. This is followed by building pairs
that indicate a tunnel exists between the two buildings in the pair. A part is any set of buildings
that are connected by tunnels, directly or indirectly.

The section described above consist of 3 distinct parts, the (WEL, BUR, RLM) part, the (GTS,
DEL) part, and the (WCH) part.

Input

 The first line contains a single integer N that indicates the number of data sets.

 Each data set consists of a single line. The first part of each data set is a list of the
buildings in the section. Buildings will be distinct in the list for a given data set.

 The list of buildings in the data set is followed by pairs of buildings. Each pair indicates a
tunnel exists between the two buildings. All buildings in the pairs will be present in the
list at the start of the data set. Buildings names consist of one or more characters.
Building names will not contain braces, commas, or spaces.

 There will be at least one building per data set. There may be zero tunnels for a data set.
Tunnels may exist that connect a building to itself

 Brackets and commas are used to separate the initial list and pairs of buildings as shown
above. There will be no extraneous spaces in the data set.

WEL BUR

RLM

GTS

DEL

UTC WCH

UTCS High School Programming Contest 2013 Page 20

Output
For each data set print out the number of separate parts that exist in the steam tunnel section
represented by the data set.

Example Input File (the last data set is wrapped on this sheet, but will be a single
line in the input file)

7

{WEL,BUR,RLM},{WEL,BUR},{BUR,RLM},{RLM,WEL}

{JES,SZB},{JES,SZB}

{WEL,WCH,RLM}

{PAI,ACES,GATES,WEL},{GATES,WEL},{GATES,ACES},{WEL,PAI}

{WEL,wel,RLM},{wel,wel}

{WEL,wel,RLM},{wel,WEL}

{WEL,BUR,RLM,GTS,DEL,UTC,WCH},{WEL,BUR},{WEL,RLM},{GTS,DEL},

{BUR,RLM},{RLM,WEL},{GTS,DEL},{UTC,BUR}

Example Output To Screen
1

1

3

1

3

2

3

UTCS High School Programming Contest 2013 Page 21

12. Us Numbers

Program Name: Us.java Input File: NONE

Assume an Us number (as opposed to a self-number) is a positive integer that can be expressed
as the sum of another positive integer N and the sum of the digits of N.

The first 10 Us numbers are:

2 = 1 + (1) digits of 1

4 = 2 + (2) digits of 2

6 = 3 + (3)

8 = 4 + (4)

10 = 5 + (5)

11 = 10 + (1 + 0) digits of 10

12 = 6 + (6)

13 = 11 + (1 + 1) digits of 11

14 = 7 + (7)

15 = 12 + (1 + 2) digits of 12

Write a program that prints out the 100
th

, 200
th

, 300
th

, 400
th

, 500
th

, 1000
th

, 2000
th

 , 10,000
th

 and
20,000

th
 Us numbers. One per line.

Input
NONE

Output
9 lines of output. Replace each <Description> below with the proper Us number.

The first line will be 100 115

The second to the last line will be 10000 11087

There is a single space between the first and second number on a line.

100 <100

th
 Us Number>

200 <200
th
 Us Number>

300 <300
th
 Us Number>

400 <400
th
 Us Number>

500 <500
th
 Us Number>

1000 <1000
th
 Us Number>

2000 <2000
th
 Us Number>

10000 <10000
th
 Us Number>

20000 <20000
th
 Us Number>

Example Input File:
NONE

Example Output To Screen
NOT SHOWN

