HotSpot: Automated Server Hopping in Cloud Spot Markets

Supreeth Shastri and David Irwin

UMass Amherst
Transient Servers are Ubiquitous in the Cloud

Servers that may terminate anytime after an advance warning period

Spot Instances: variable-priced transient VMs offered via second price auction

Preemptible VM: short-lived VMs offered at fixed but discounted prices

Internal Use: Resource harvesting in datacenters

[SoCC 2016, OSDI 2016, ATC 2017]
EC2 Spot Markets in a Nutshell

7600+ spot markets worldwide

1. The users bid for VMs in a second price auction.

2. EC2 evaluates supply-demand dynamic to price spot servers.

3. EC2 allocates if bid price \geq spot price; Revokes when not.

The defining characteristics of spot VMs are low average price and unexpected revocations.

Applications and frameworks do not perform well when the underlying servers are frequently revoked.
Prior work treats revocations as failures, and employs fault-tolerance to reduce its impact.

Fault-tolerance \equiv insurance

users pay upfront premiums (i.e., fault-tolerance overhead)
and expect a payout later (i.e., ability to limit the loss of work)

... but insurance-like approaches ignore

Price Risk
i.e the risk that a VM's price will increase relative to others

2015
SpotOn [SoCC]
SpotCheck [EuroSys]
Cumulon [VLDB]

2016
TR-Spark [SoCC]
Flint [EuroSys]
BOSS [Infocom]

2017
Proteus [EuroSys]
Pado [EuroSys]
Exosphere [Sigmetrics]

Spot Market A
Spot Market B
How to enable flexible cloud applications to mitigate the price risk transparently?

Does mitigating the price risk affect performance and revocation risk?

HotSpot: Automated Server Hopping
Automated Server Hopping

“A resource container that automatically hops spot VMs as market conditions change

“Change, before you have to”

Results from the EC2 spot market
US-East-1 markets (3/1/2017 - 5/1/2017)

Change, before you have to

Quote from Jack Welch, former CEO of General Electric

Ideal savings from hopping vs. staying for a long-running job (30 days)
Effect on Revocation Risk and Performance
Insights from spot market analysis

1. Highly discounted servers tend to have lower revocation risk
2. Cost efficiency is uncorrelated with VM capacity (and thus performance)

Server hopping lowers revocations without necessarily degrading performance
Design of Server Hopping Logic

Migration policy

Run on a VM that has the best cost-efficiency in $/utilized-resource without hindering the performance

Policy invariant

Trigger a check whenever

- VM utilization changes
- Spot market prices change

Cost-benefit analysis

Migrate to the spot vm that gives the highest cost-benefit gain

Expected benefit

- Gain in cost-efficiency for the duration of expected stay
- f(market characteristics)

Migration cost

- Double-paying for VMs + min. VM holding time
- f(application footprint)
HotSpot: Design and Implementation

1. MONITOR
 - cloud market prices
 - VM resource usage

2. ANALYZE
 - cost-benefit analysis
 - [Decision: Quick Failure]

3. SELF-MIGRATE
 - [Diagram: Migration Process]

Fully functional prototype available at:
https://sustainablecomputinglab.github.io/hotspot/
Evaluation

Compare **cost, performance, revocations** of running a flexible batch application on

- **Spot VM with no protection** (SpotFleet)
- **Spot VM with fault-tolerance** (SpotOn [SoCC 2015])
- **Spot VM with server hopping** (HotSpot)

1. **How do changes in job and market characteristics affect each approach?**

 Run the prototypes on EC2 (but control job and market conditions using emulators)

2. **How do different approaches perform on the real market for real jobs?**

 Simulate running Google cluster trace jobs on Amazon spot price traces (03/2017 to 05/2017)
Even in the current EC2 spot markets (with low revocation rates), optimizing for price-risk results in **30-50% additional savings** without degrading performance.
Conclusion

Transient server markets are an emerging area and offer many opportunities for cost savings.

Price Risk

Price risk is significant in current spot markets.

Mitigating price risk also reduces revocations.

HotSpot

Proposed the technique of automated server hopping.

Designed and implemented HotSpot for EC2 spot markets.

Evaluations

30-50% cost reduction vs. other techniques:
- Lower Overhead
- Lower Revocations
- More Deterministic
Backup Slides
Price Risk >> Revocation Risk

Data from all 402 spot VMs in US-East-1 over 3/1/2017 to 5/1/2017

Mean Time-to-Revocation (TTR) when bidding 1x is \(~25\) days and 10x is \(~47\) days

Time-to-Change (TTC) for the cheapest VM is \(1.1\) hours
Migration Latencies in EC2

<table>
<thead>
<tr>
<th>Operation</th>
<th>Min (sec)</th>
<th>Mean (sec)</th>
<th>Max (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price and Resource Monitoring</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Acquire On-demand VM</td>
<td>16</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>Acquire Spot VM</td>
<td>31</td>
<td>67</td>
<td>167</td>
</tr>
<tr>
<td>Transferring Disk & Network</td>
<td>18</td>
<td>28</td>
<td>48</td>
</tr>
<tr>
<td>Terminate Source VM</td>
<td>31</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>~64-80</td>
<td>~101-140</td>
<td>~126-262</td>
</tr>
</tbody>
</table>

Platform’s API operations

![Bar chart showing migration latencies in EC2](chart.png)
Effect of Changes in Market Volatility

As markets become more volatile,
HotSpot’s savings will improve relative to SpotFleet and SpotOn
HotSpot outperforms both SpotFleet and SpotOn at all levels, though it’s gains reduce with increase in the memory footprint.