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Abstract The field of reinforcement learning (RL) has been energized in the past

few decades by elegant theoretical results indicating under what conditions, and how

quickly, certain algorithms are guaranteed to converge to optimal policies. However, in

practical problems, these conditions are seldom met. When we cannot achieve optimal-

ity, the performance of RL algorithms must be measured empirically. Consequently, in

order to meaningfully differentiate learning methods, it becomes necessary to charac-

terize their performance on different problems, taking into account factors such as state

estimation, exploration, function approximation, and constraints on computation and

memory. To this end, we propose parameterized learning problems, in which such factors

can be controlled systematically and their effects on learning methods characterized

through targeted studies. Apart from providing very precise control of the parameters

that affect learning, our parameterized learning problems enable benchmarking against

optimal behavior; their relatively small sizes facilitate extensive experimentation.

Based on a survey of existing RL applications, in this article, we focus our attention

on two predominant, “first order” factors: partial observability and function approxi-

mation. We design an appropriate parameterized learning problem, through which we

compare two qualitatively distinct classes of algorithms: on-line value function-based

methods and policy search methods. Empirical comparisons among various methods

within each of these classes project Sarsa(λ) and Q-learning(λ) as winners among the

former, and CMA-ES as the winner in the latter. Comparing Sarsa(λ) and CMA-ES

further on relevant problem instances, our study highlights regions of the problem space

favoring their contrasting approaches. Short run-times for our experiments allow for an

extensive search procedure that provides additional insights on relationships between

method-specific parameters — such as eligibility traces, initial weights, and population

sizes — and problem instances.
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1 Introduction

Sequential decision making from experience, or reinforcement learning (RL), is a well-

suited paradigm for agents seeking to optimize long-term gains as they carry out

sensing, decision and action in an unknown environment. RL tasks are commonly

formulated as Markov Decision Problems (MDPs). The solution of MDPs has bene-

fited immensely from a strong theoretical framework that has been developed over the

years. The cornerstone of this framework is the value function of the MDP (Bellman,

1957), which encapsulates the long-term utilities of decisions. Control policies can be

suitably derived from value functions; indeed several algorithms provably converge to

optimal policies in finite MDPs (Watkins and Dayan, 1992; Singh et al., 2000). Also,

near-optimal behavior can be achieved after collecting a number of samples that is

polynomial in the size of the state space (|S|) and the number of actions (|A|) (Kearns

and Singh, 2002; Brafman and Tennenholtz, 2003; Strehl and Littman, 2005), using a

memory bounded in size by O(|S||A|) (Strehl et al., 2006).

Unfortunately a large section of the RL tasks we face in the real world cannot be

modeled and solved exactly as finite MDPs. Not only are the traditional objectives

of convergence and optimality thereby inapplicable to a predominant number of tasks

occurring in practice, in many of these tasks we cannot even ascertain the best per-

formance that can be achieved, or how much training is necessary to achieve given

levels of performance. The objective of learning in such practical tasks, which fall be-

yond the reach of current theoretical modeling, has to be rescaled to realizing policies

with “high” expected long-term reward in a “sample efficient” manner, as determined

empirically.

In a formal sense, the “No Free Lunch” theorems of Wolpert and Macready (1997)

establish that for any optimization algorithm, an elevated performance in one class of

problems is offset by worse performance in some other class. Even so, the enterprise

of machine learning rests on the assumption that classes of problems encountered in

practice tend to possess regularities, which can be actively characterized and exploited.

Consequently, to the extent that the relationships between problem instances and the

performance properties of algorithms are unclear, it becomes a worthwhile pursuit to

uncover them. The need for such research has long been advocated: in an early editorial

in this journal, Langley (1988, see p.7) writes:

“For instance, one might find that learning method A performs better than

method B in one environment, whereas B fares better than A in another. Al-

ternatively, one might find interactions between two components of a learning

method or two domain characteristics. We believe the most unexpected and

interesting empirical results in machine learning will take this form.”

The practice of supervised learning has benefitted from a number of empirical stud-

ies that seek to identify the strengths and weaknesses of learning methods. For example,

Caruana and Niculescu-Mizil (2006) undertake a detailed comparison involving a num-

ber of supervised learning methods, test problems, and evaluation metrics. Caruana

et al. (2008) present empirical results demonstrating that random forests (Breiman,
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2001) are typically more effective than several other classification methods on prob-

lems with high dimensionality (greater than 4000). Although the canonical boosting

algorithm (Freund and Schapire, 1996) enjoys desirable theoretical properties and is

predominantly effective in practice, studies comparing it with other ensemble schemes

such as bagging (Quinlan, 1996; Bauer and Kohavi, 1999) hint at its vulnerability

in the presence of noisy training data. Banko and Brill (2001) advance the case that

for problems with very large data sets (for example, natural language applications on

the Internet), simple classifiers such as Winnow (Littlestone, 1987) can be the most

effective, and that voting-based ensemble schemes do not retain their attractiveness.

By associating problem characteristics with the strengths and weaknesses of super-

vised learning methods, the studies listed above provide useful “rules of thumb” to a

practitioner who must choose a method to apply to a problem. Unfortunately the com-

plex scope of the RL problem leaves the practitioner of RL with few such guidelines.

Faced with a sequential decision making problem, not only does a designer need to

pick a learning algorithm; he/she has to address the related issues of state estimation,

exploration, and function approximation, while possibly satisfying computational and

memory constraints. The broad motivation for this article is the eventual development

of a “field guide” for the practice of RL, which would both inform the choices made by

designers of RL solutions, and identify promising directions for future research.

Ultimately, a field guide would be evaluated based on the extent to which it can

expedite the process of designing solutions for full-scale deployed applications. However,

such applications are themselves too complex and constrained to provide reliable data

from which the principles for a field guide can be inferred. Rather, there is a need for

simpler, more transparent problems through which we, as designers, can systematically

sort through the complex space of interactions between RL problems and solution

strategies. This article joins a growing line of research in this direction (Moriarty et al.,

1999; Gomez et al., 2008; Heidrich-Meisner and Igel, 2008a; Whiteson et al., 2010).

The primary thrust of existing work on the subject has been in comparing RL al-

gorithms on standard, benchmarking tasks, with possibly a small number of variations.

By contrast, we design a synthetic, parameterized learning problem1 with the explicit

purpose of ascertaining the “working regions” of learning algorithms in a space that is

carefully engineered to span the dimensions of the task and the learning architecture.

The approach we propose enjoys the following merits:

1. The designed task and learning framework are easy to understand and can be

controlled precisely.

2. We may examine the effect of subsets of problem parameters while keeping others

fixed.

3. We can benchmark learned policies against optimal behavior.

4. The learning process can be executed in a relatively short duration of time, thereby

facilitating extensive experimentation.

While the careful design of a synthetic learning problem allows us these liberties,

equally it qualifies the extent to which our conclusions may generalize in practice.

Thus, the results from our study are to be taken as starting points for further empirical

investigation, rather than treated as well-grounded final products in themselves. In this

1 The term “parameterized learning problem” is quite generic; such problems have been used
in the past both in RL and in other fields. For some examples, see our discussion of related
work in Section 6. By applying the term here to describe our framework, we aim to underscore
that problem parameters are its very crux; they are not secondary as in related work.
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sense, the methodology we put forth enjoys a complementary relationship with the

research strategy of evaluating RL methods on more realistic problems. We proceed to

demarcate the scope of our study.

1.1 Scope of Study

In order to develop a field guide for solving realistic RL problems, it is first necessary

to characterize such problems along the dimensions that distinguish them from well-

understood cases such as table-based learning in finite MDPs. Towards this purpose,

we undertake a survey of literature describing practical applications of RL. While

surveying material from relevant journals and conference proceedings, we apply the

criterion that the task application, rather than the learning method employed, be the

primary focus of the publication. Based on our findings, we focus our attention on two

predominant, “first order” factors that characterize a sizeable fraction of sequential

decision making problems in practice: (a) partial observability, which arises due to

an agent’s inability to identify the system state, and (b) function approximation,

which is necessary for learning in large or continuous state spaces. The ubiquity of

these factors in applications is apparent from Table 1, which summarizes our survey.2

A majority of the applications listed in Table 1 have to contend with partial observ-

ability of state. In complex systems such as stock markets (Nevmyvaka et al., 2006),

computer networks (Tesauro et al., 2007), and cellular tissue (Guez et al., 2008), avail-

able measurements seldom suffice to capture all the information that can affect deci-

sion making. Nearly every agent embedded in the real world (Kwok and Fox, 2004; Ng

et al., 2004; Lee et al., 2006) receives noisy sensory information. The inadequacy of the

sensory signal in identifying the underlying system state hinders the assumption of a

Markovian interaction between the agent and the environment, on which the theoretical

guarantees associated with many learning methods rely. Whereas coping with partial

observability in a systematic manner is a well-studied problem, it is yet to scale to

complex tasks with large, high-dimensional, continuous state spaces (Chrisman, 1992;

Cassandra et al., 1994; Bakker et al., 2003; Pineau et al., 2006).

Of the 25 applications listed in Table 1, 15 involve continuous state spaces, which

necessitate the use of function approximation in order to generalize. Indeed among the

ten applications that have discrete state spaces, too, seven use some form of function

approximation to represent the learned policy, as their state spaces are too large for

enumeration, and possibly even infinite. The use of function approximation negates

the theoretical guarantees of achieving optimal behavior. Often the function approxi-

mation scheme used is not capable of representing an optimal policy for a task; even

when it is, seldom can it be proven that a learning algorithm will discover such a

policy. Although there exist convergence guarantees for certain algorithms that use

linear function approximation schemes (Konda and Tsitsiklis, 2003; Perkins and Pre-

cup, 2003; Maei et al., 2010), they do not provide effective lower bounds for the values

of the learned policies. Further, convergence results rarely extend to situations in which

non-linear representations such as neural networks are used to approximate the value

2 Other independently-compiled surveys of sequential decision making applications corrobo-
rate the observations we draw based on Table 1. Langley and Pendrith (1998) describe several
RL applications presented at a symposium organized around the topic; Szepesvári lists numer-
ous applications from the control and approximate dynamic programming literature at this
URL: http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html.
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Table 1 Characterization of some popular applications of reinforcement learning. “Policy
Representation” describes the underlying representation from which the policy is derived. A
“neural network” representation is non-linear, incorporating at least one hidden layer of units.
Under tile coding, the number of “features” indicates the number of state variables, rather
than the number of individual tiles.

Task
State

State Space
Policy Representation

Observability (Number of Features)

Backgammon
Complete Discrete

Neural network
(Tesauro, 1992) (198)
Job-shop scheduling

Complete Discrete
Neural network

(Zhang and Dietterich, 1995) (20)
Tetris

Complete Discrete
Linear

(Bertsekas and Tsitsiklis, 1996) (21)
Elevator dispatching

Partial Continuous
Neural network

(Crites and Barto, 1996) (46)
Acrobot control

Complete Continuous
Tile coding

(Sutton, 1996) (4)
Dynamic channel allocation

Complete Discrete
Linear

(Singh and Bertsekas, 1997) (100’s)
Active guidance of finless rocket

Partial Continuous
Neural network

(Gomez and Miikkulainen, 2003) (14)
Fast quadrupedal locomotion

Partial Continuous
Parameterized policy

(Kohl and Stone, 2004) (12)
Robot sensing strategy

Partial Continuous
Linear

(Kwok and Fox, 2004) (36)
Helicopter control

Partial Continuous
Neural network

(Ng et al., 2004) (10)
Dynamic bipedal locomotion

Partial Continuous
Feedback control

(Tedrake et al., 2004) policy (2)
Adaptive job routing/scheduling

Partial Discrete
Tabular

(Whiteson and Stone, 2004) (4)
Robot soccer keepaway

Partial Continuous
Tile Coding

(Stone et al., 2005) (13)
Robot obstacle negotiation

Partial Continuous
Linear

(Lee et al., 2006) (10)
Optimized trade execution

Partial Discrete
Tabular

(Nevmyvaka et al., 2006) (2-5)
Blimp control

Partial Continuous
Gaussian Process

(Rottmann et al., 2007) (2)
9 × 9 Go

Complete Discrete
Linear

(Silver et al., 2007) (≈1.5 million)
Ms. Pac-Man

Complete Discrete
Rule List

(Szita and Lőrincz, 2007) (10)
Autonomic resource allocation

Partial Continuous
Neural network

(Tesauro et al., 2007) (2)
General game playing

Complete Discrete
Tabular (over

(Finnsson and Björnsson, 2008) part of state space)
Soccer opponent “hassling”

Partial Continuous
Neural network

(Gabel et al., 2009) (9)
Adaptive epilepsy treatment

Partial Continuous
Extremely randomized

(Guez et al., 2008) trees (114)
Computer memory scheduling

Complete Discrete
Tile coding

(İpek et al., 2008) (6)
Motor skills

Partial Continuous
Motor primitive

(Peters and Schaal, 2008) coefficients (100’s)
Combustion Control

Partial Continuous
Parameterized policy

(Hansen et al., 2009) (2-3)

function; yet non-linear representations are used commonly in practice, as apparent

from Table 1.

Our survey of RL applications suggests that the most common strategy adopted

while implementing sequential decision making in practice is to apply algorithms that
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come with provable guarantees under more restrictive assumptions, and to empirically

verify that they remain effective when those assumptions are relaxed. Typically much

manual effort is expended in designing schemes to mitigate the adverse effects partial

observability and inadequate function approximation. In addition recent lines of re-

search have focused on developing adaptive methods to cope with these factors (Pineau

et al., 2006; Whiteson and Stone, 2006; Mahadevan, 2009). While such methods can

improve the performance of RL algorithms in practice, their effectiveness is yet to be

demonstrated on a wide scale; it remains that even in the situations they apply, the un-

desirable effects of partial observability and function approximation are only reduced,

and not eliminated.

Adopting the view that in practice, partial observability and function approxi-

mation will affect learning to varying degrees, we aim to examine the capabilities of

learning methods that operate in their presence. Specifically we design a framework in

which these factors can be systematically controlled to gauge their effect on different

learning methods. While these factors can be construed as aspects of an agent’s learn-

ing apparatus, our study also considers task-specific characteristics such as the size of

the state space and the stochasticity of actions. Any fixed setting for the parameters

that control these factors determines a learning problem, on which different learning

methods can be compared.

In our study, we compare learning methods from two contrasting classes of algo-

rithms. The first class corresponds to (model-free) on-line value function-based meth-

ods, which learn by associating utilities with action choices from individual states.

The second class of algorithms we examine are policy search methods. Rather than

learn a value function, policy search methods seek to directly optimize the parameters

representing a policy, treating the expected long-term reward accrued as an objective

function to maximize.

First we evaluate several methods within each of the above classes, and based on

their empirical performance, pick one method from each class to further compare across

a suite of problem instances. The representatives thus chosen are Sarsa(λ) (Rummery

and Niranjan, 1994; Sutton and Barto, 1998) from the class of on-line value function-

based methods, and CMA-ES (Hansen, 2009) from the class of policy search methods.

In evaluating a method on a problem instance, our experimental framework allows

us to extensively search for the method-specific parameters (such as learning rates,

eligibility traces, and sample sizes for fitness evaluation) that lead to the method’s best

performance. Our experiments identify regions of the problem space that are better

suited to on-line value function-based and policy search methods, and yield insights

about the effect of algorithm-specific parameters.

The remainder of this article is organized as follows. In Section 2, we describe

the detailed design of our parameterized learning problem. Section 3 provides brief

descriptions of the methods compared in the study. In Section 4, we present detailed

results from our experiments, which we follow with a discussion in Section 5. Related

work is discussed in Section 6. We summarize and conclude the article in Section 7.

2 A Parameterized Sequential Decision Making Problem

In this section, we describe the construction of our parameterized learning problem,

which is composed of a task MDP and an accompanying learning framework that

incorporates partial observability and function approximation.
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2.1 Problem Size and Stochasticity

The class of tasks we design consists of simple square grids, each having a finite number

of states. An example of such a task is illustrated in Figure 1. The size of the state

space is s2−1, where s, the side of the square, serves as a parameter to be varied. Each

episode begins with the agent placed in a start state chosen uniformly at random from

among the set of non-terminal states, as depicted in Figure 1(a). The north and east

sides of the grid are lined with terminal states, of which there are 2(s− 1). From each

state, the agent can take either of two actions: North (N) and East (E). On taking

N (E), the agent moves north (east) with probability p and it moves east (north) with

probability 1 − p. The variable p, which essentially controls the stochasticity in the

transitions, is also treated as a parameter of the task MDP. Note that irrespective of

the value of p, the agent always moves either north or east on each transition before

reaching a terminal state. Consequently episodes last at most 2s− 3 steps.

Through the course of each episode, the agent accrues rewards at the states it

visits. Each MDP is initialized with a fixed set of rewards drawn uniformly from [0, 1],

as illustrated in Figure 1(b). In general the rewards in an MDP can themselves be

stochastic, but in our tests, we find that the effect of stochastic rewards on our learning

algorithms is qualitatively similar to the effect of stochastic state transitions, which are

controlled by the parameter p. Thus, we keep the rewards deterministic. Figures 1(c)

and 1(d) show the optimal values and the actions to which they correspond under

the reward structure shown in Figure 1(b) (assuming p = 0.1). We do not discount

rewards in the computation of values. Notice that the variation in values along the

north and east directions is gradual: this supports the scope for generalization between

neighboring cells. The values in Figure 1(c) are obtained using dynamic programming.

Indeed it is also straightforward under this setup to learn the optimal policy based on

experience, for example by using a table of action values updated through Q-learning.

However, the objective of our study is to investigate situations in which table-based

approaches are not guaranteed to succeed. In the remainder of this section, we specify

the aspects of our learning problem that, in ways similar to real-world problems, render

table-based approaches infeasible.

N

E

Non−terminal Terminal

(a)

.77 .33 .59 .34 .82 .39

.79 .01 .26 .03 .14 .55 .57

.23.53.83.96.44.03.84

.99 .55 .75 .69 .05 .23 .05

.82.92.85.18.36.96.58

.30

.35 .28 .32 .90

.69 .84 .05 .23 .22

.64.45

.95

Example Rewards

(b)

1.2

3.1

4.8

5.9

6.5

1.3

3.2

4.4

4.9

5.8

1.1

3.0

3.7

4.4

4.7

1.1

2.2

3.1

3.7

3.8

4.4

1.1

1.5

2.3

2.5

3.3

3.5

0.6

1.0

1.4

1.5

2.2

2.9

0 0 0 0 0 0

0

0

0

0

0

05.56.46.8

Values of optimal actions

(c)

Optimal Policy (p = 0.1)

(d)

Fig. 1 (a) Example of parameterized MDP example with s = 7; the number of non-terminal
states is 36. (b) Rewards obtained at “next states” of transitions. (c) Optimal action values
from each state when p = 0.1. (d) Corresponding optimal policy.
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2.2 Partial Observability

In an MDP, the current system state and action completely determine the dynamics

of the ensuing transition. However, in a number of RL applications, perceptual alias-

ing (Whitehead and Ballard, 1991) and noisy sensors (Stone et al., 2005) deny an

agent direct access to the underlying system state. In principle the agent can keep a

record of its past observations, and effectively use this memory as a means to recon-

struct the system state (Lin and Mitchell, 1993; McCallum, 1996). Indeed the seminal

work of Åström (1965) demonstrates that by keeping a “belief state” that is updated

based on incoming observations, an agent can eventually disambiguate states perfectly.

However, the complexity of doing so is forbidding even in the context of planning

(with known transition dynamics) (Cassandra et al., 1994), and is yet to scale to large

problems (Pineau et al., 2006). Using experience to disambiguate states in partially

observable environments is typically feasible only in very small problems (Chrisman,

1992; McCallum, 1995; Bakker et al., 2003). In effect, learning agents in most RL

applications have to treat “observed states” as states, and their performance varies

depending on the validity of this assumption (Nevmyvaka et al., 2006).

Each cell in our task MDP corresponds to a state. In order to model partial ob-

servability, we constrain the learner to use an observed state o, which, in general, can

be different from the true state s. Our scheme to pick o based on s is depicted in Fig-

ure 2. Given s, we consider all the cells that lie within dx from it along the x direction

and within dy along the y direction: from among these cells, we pick one uniformly at

random to serve as the corresponding observed state o. Controlling dx and dy allows

us to vary the extent of partial observability.

Before starting a learning run, we fix dx and dy: each is sampled from a Gaussian

distribution with zero mean and a standard deviation equal to σ, and then rounded to

the nearest integer. Note that dx and dy can be positive, negative, or zero. Figures 2(b)

and 2(c) show an illustrative trajectory of states numbered 1 through 9. Under different

settings of dx and dy, the figures show the set of all possible observed states that

could result while the agent traces its trajectory. As is apparent from the figures, by

yd

dx

Possible observation

s,o o

oo

o o

o

s: state

(a)

Possible observation

ydx d=−2 =1

8

7

32

1

6

9

5

4

(b)

Possible observation

ydx d=1 =0

32

1

4

5 6 7

8 9

(c)

Fig. 2 An implementation of partial observability in the example MDP from Figure 1. (a)
Variables dx and dy (themselves generated randomly based on parameter σ) define a rectangle
with the true state at a corner; cells within this rectangle are picked uniformly at random
to constitute observed states. (b) A trajectory of true states 1 through 9, and the set of all
possible observed states that could be encountered during this trajectory when dx = −2 and
dy = 1. (c) For the same trajectory, the set of possible observed states when dx = 1 and
dy = 0.
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keeping dx or dy fixed for the entire course of a learning run (i.e., by not changing

them from episode to episode), the state noise encountered by the agent during its

lifetime is systematic in nature. Informal experimentation with a number of schemes

for implementing state noise suggests that biased noise tends to affect learning more

severely than zero-mean noise. The magnitude of the noise, implemented through dx

and dy, is controlled by the single free parameter σ, which we vary in our experiments.

Setting σ to 0 ensures complete observability of state. Progressively larger values of σ

lead to observed states that are farther apart from the agent’s true state, and render

the agent’s interaction with the environment non-Markovian.

2.3 Function Approximation

The function approximation scheme in our learning problem is motivated by “CMAC”

(Albus, 1981), a popular method that is used in a number of RL applications (Singh

and Sutton, 1996; Stone et al., 2005; İpek et al., 2008). At each decision making step,

we provide the learning agent a vector of nf features to describe its observed state.

Each feature is a square “tile”, with a binary activation: 1 within the boundary of

the tile and 0 outside. Tiles have a fixed width w, which serves as a parameter in our

experiments that determines the extent of generalization between states while learning.

The centers of the tiles are chosen uniformly at random among non-terminal cells in

the MDP. Figure 3 continues the example from Figure 1, describing the architecture

used for function approximation. In Figure 3(a), nine tiles (numbered 1 through 9) are

used by the function approximator. The tile width w is set to 3; for illustration, four

among the nine tiles are shown outlined.

Notice that every non-terminal cell in Figure 3(a) is covered by at least one tile:

i.e., every cell has at least one feature that is active. Indeed we ensure that complete

coverage is always achieved, in order that non-trivial decisions can be made at every

cell. Clearly, not all the cells could be covered if the number of tiles (nf ) and the width

= 9)Centers of RBFs (nf

2

3

4 5

6 7 8 9

1

(a)

N E

3−8

2 −1

0 6

5 5

−3

4 −6

2

2 3

4 1

7−2

1

2

3

4

5

6

7

8

9

f

f

f

f

f

f

f

f

f

(b)

3 3 3 2 2 2

3 3 3 5 5 5

8 2 −3 4 6 6

5 9 4 4 6 6

7 8 10 10 8

8

7

72 5 6 6

Larger of activation values

(c)

Greedy policy

(d)

Fig. 3 Function approximation in example MDP from Figure 1. (a) A randomly chosen subset
of cells (numbered 1 through 9) are the centers of overlapping tiles (giving χ = 9

36
= 0.25). The

tile width w is set to 3; tiles 1, 2, 5, and 9 are shown outlined (and clipped at the boundaries of
the non-terminal region). (b) Table showing coefficients associated with each tile for actions N

and E. (c) The activation value of each cell for an action is the sum of the weights of the tiles
to which it belongs. The figure shows the higher activation value (among N and E) for each
cell. (d) Arrows mark a policy that is greedy with respect to the activations: i.e., in each cell,
the action with a higher activation value is chosen. In general the agent will take the greedy
action from its observed state.
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of each tile (w) are both small; in all our experiments, we set these parameters such

that in conjunction they can facilitate complete coverage of all non-terminal cells. The

placement of the nf tiles is performed randomly, but preserving the constraint that all

non-terminal cells be covered. In order to implement this constraint, we first place the

tiles in regular positions that guarantee complete coverage, and then repeatedly shift

tiles, one at a time, to random positions while still preserving complete coverage. Rather

than treat nf directly as a parameter in our experiments, we normalize it by dividing

by the number of non-terminal cells: (s− 1)2. The resulting quantity, χ =
nf

(s−1)2
, lies

in the interval (0, 1], and is more appropriate for comparisons across different problem

sizes. In Figure 3(a), nf = 9 and s = 7, yielding χ = 0.25. We treat χ as a parameter

in our experiments. As we shortly describe, χ determines the resolution with which

independent actions can be taken from neighboring cells. In this sense, χ measures the

“expressiveness” of the function approximation scheme.

Given the set of features for its observed state, the agent computes a separate

linear combination for each action, yielding a scalar “activation” for that action. For

illustration, consider Figure 3(b), which shows a set of coefficients for each feature and

action. It is these coefficients (or “weights”) that the agent updates when it is learning.

While learning, the agent may take any action from the states it visits. However, while

evaluating learned behavior, we constrain the agent to take the action with the higher

activation, breaking ties evenly. Figure 3(c) shows the higher of the resulting activations

for the two possible actions at each cell in our illustrative example; Figure 3(d) shows

the action with the higher activation.

In effect, the only free parameters for the learning agent to update are the sets of

coefficients corresponding to each action. By keeping other aspects of the representation

— such as the features and policy — fixed, we facilitate a fair comparison between

different learning methods. In general, value function-based methods such as Sarsa(λ)

seek to learn weights that approximate the action value function. We expect that

setting σ = 0 and χ = 1 would favor them, as the optimal action value function can

then be represented. While this is so under any value of w, setting w = 1 replicates

the case of table-based learning with no generalization. Higher settings of w enforce

generalization. Increasing σ or reducing χ would likely shift the balance in favor of

policy search methods, under which activations of actions are merely treated as action

preferences. As Baxter and Bartlett (2001) illustrate, even in simple 2-state MDPs, with

function approximation, it is possible that the optimal action value function cannot be

represented, even if an optimal policy can be represented.

In summary the design choices listed in this section are the end products of a

process of trial and error directed towards constructing a suite of instances that allow

us to study trends in learning algorithms, rather than constructing instances that are

challenging in themselves. Table 2 summarizes the parameters used in our framework.

Parameters s, p, σ, χ, and w, along with a random seed, fix a learning problem for our

experiments. By averaging over multiple runs with different random seeds, we estimate

the mean performance achieved by learning methods as a function of s, p, σ, χ, and w.

Note that even if these parameters do not perfectly replicate an instance of any specific

sequential decision making in practice, they are capable of being varied in a controlled

manner to measure their effect on learning algorithms.

It must be noted that the parameterized learning problem described above is limited

in several respects. While it enables the study of the most central problem parameters

— problem size, stochasticity, partial observability and function approximation — it
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Table 2 Summary of learning problem parameters. The last column shows the ranges over
which each parameter is valid and meaningful to test.

Parameter Property of: Controls: Range

s Task Size of state space {2, 3, . . . ,∞}
p Task Stochasticity in transitions [0, 0.5)
σ Agent/task interface Partial observability [0,∞)
χ Agent Expressiveness of func. approx. (0, 1]
w Agent Generalization of func. approx. {1, 3, . . . , 2s − 3}

does not likewise isolate several other aspects influencing practical implementations of

RL. Foremost is the question of exploration, which is not very crucial in our setup due

to the occurrence of start states uniformly at random. The learning agent only has two

actions; in practice large or continuous action spaces are quite common. Understanding

the effect of other aspects, such as computational and memory constraints, the variation

among action values from a state, different types of state noise, the sparsity and spread

of the rewards, and the average episode length, would also be important for designing

better algorithms in practice. We hope that the experimental methodology introduced

in this article will aid future investigation on such subjects.

In the next section, we provide brief descriptions of the learning algorithms used

in our experiments; in Section 4, the algorithms are compared at a number of different

parameter settings drawn from the ranges provided in Table 2. Along with the pa-

rameterized learning problem itself, the results of these experiments are an important

contribution of our article.

3 Methods in Study

As noted earlier, we compare two contrasting classes of learning methods in our study:

on-line value function-based (VF) methods, and policy search (PS) methods. With the

aim of comparing these classes themselves, we first evaluate various methods within

each class to pick a representative. In this section, we describe the learning methods

thus considered, and describe relevant implementation-specific details. Experiments

follow in Section 4.

3.1 On-line Value Function-based (VF) Methods

We compare three learning methods from the VF class: Sarsa(λ) (Rummery and Ni-

ranjan, 1994; Rummery, 1995), Q-learning(λ) (Watkins, 1989; Watkins and Dayan,

1992; Rummery, 1995; Peng and Williams, 1996; Sutton and Barto, 1998), and Ex-

pected Sarsa(λ) (abbreviated “ExpSarsa(λ)”) (Rummery, 1995; van Seijen et al., 2009).

These methods are closely related: they all continually refine an approximation of the

action value function, making a constant-time update every time a new state is en-

countered. Yet the methods are distinguished by subtle differences in their update

rules. We include these methods in our study to examine how their differences affect

learning under function approximation and partial observability: settings under which

theoretical analysis is limited. We proceed to describe the methods themselves.
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Sarsa(λ) is a model-free value function-based method, which makes on-line, on-

policy, temporal difference (TD) learning updates. The learning agent maintains an

estimate of an action value function, Q, which is updated as it encounters sequences of

states (s), actions (a) and rewards (r). In particular assume that the agent encounters

the following trajectory, in which suffixes index decision steps:

st, at, rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, . . . .

The agent updates Q(st, at) by computing a target, QTarget(st, at), and taking an

incremental step towards it as follows:

Q(st, at)← (1− αt)Q(st, at) + αtQTarget(st, at),

where αt ∈ (0, 1] is the learning rate for the update. Recall that in our architecture, Q

is represented as a linear function approximator; hence, the learning update is imple-

mented through gradient descent. Under Sarsa(0), the “fully bootstrapping” version of

Sarsa, the target is computed as follows:

Q
Sarsa(0)
Target (st, at) = rt+1 + γQ(st+1, at+1),

where γ ∈ [0, 1) is a discount factor.3 Note that the target does not count the actual

rewards accrued beyond time step t + 1; rather, the discounted sum of these “future”

rewards is substituted with its current estimate: Q(st+1, at+1). By contrast, a Monte

Carlo method, Sarsa(1) computes its estimates wholly from sample returns, as:

Q
Sarsa(1)
Target (st, at) = rt+1 + γ

∞
X

k=1

γ
k−1

rt+1+k.

This target would not change depending on the actual states that the trajectory

visited, but only based on the sequence of rewards obtained. This makes Monte Carlo

methods less dependent on the state signal than fully bootstrapping methods. Both

methods still try to estimate state-action values, and therefore rely on being able to

precisely detect st and represent QSarsa
Target(st, at). In general, intermediate methods that

implement varying extents of bootstrapping can be conceived by varying the “eligibility

trace” parameter λ ∈ [0, 1]. The estimated target for Q(st, at) used by Sarsa(λ) is:

Q
Sarsa(λ)
Target (st, at) = rt + γ{(1− λ)Q(st+1, at+1) + λQ

Sarsa(λ)
Target (st+1, at+1)}.

For the case of discrete MDPs, in which Q can be maintained as a table, Singh

et al. (2000) show that by following a policy that is “greedy in the limit” with respect

to Q, and which performs an infinite amount of exploration, Sarsa(0) will ultimately

converge to the optimal action value function Q∗, from which the optimal policy π∗

can be derived by acting greedily. For linear function approximation schemes such as in

our parameterized learning problem, Perkins and Precup (2003) show that convergence

to a fixed point can be achieved by following a method similar to Sarsa(0).

We use a standard implementation of Sarsa(λ) with binary features, a linear repre-

sentation, and replacing eligibility traces (see Sutton and Barto, 1998, p. 212). While

learning, the agent follows an ǫ-greedy policy. We treat both the exploration strategy

3 It is legitimate to use γ = 1 in episodic tasks. We do so in our experiments (see Section 4).
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and the schedule for annealing the learning rate as parameterizable processes. We follow

an ǫu-greedy exploration policy during episode u, keeping ǫ0 as a free parameter, and

ǫU = 0.01, where U is the total number of training episodes. Intermediate values of ǫu

are set based on a harmonic sequence going from ǫ0 to 0.01. We use such a schedule

based on empirical evidence of its effectiveness.

Interestingly, informal experimentation shows us that a similar annealing schedule

is also the most effective for the learning rate α; i.e., we keep α0 as a free parameter

and anneal it harmonically to 0.01 at the end of training. Since features are binary, we

divide the mass of each update equally among the features that are active under the

state-action being updated. It is worth noting that theoretically-motivated update rules

exist for annealing the learning rate. For example, Hutter and Legg (2008) derive a

rule based on minimizing the squared loss between estimated and true values. However,

their approach is only viable with tabular representations of Q, and further, only in

continuing (rather than episodic) tasks.

Apart from λ, ǫ0, and α0, yet another parameter influencing Sarsa(λ) is the setting

of the initial weights (coefficients in the linear representation). In our experiments, we

set all the weights initially to θ0, which is our final method-specific parameter. Table 3

summarizes the parameters defining Sarsa(λ). These parameters also apply to other

methods in the VF class, which we now describe.

Whereas Sarsa(λ) computes its target for time t based on the action to be taken at

time t+1 — at+1 — ExpSarsa(λ) and Q-learning(λ) compute their targets (and make

learning updates) before at+1 is chosen. Once st+1 is reached, ExpSarsa(λ) computes

its target based on an expectation over the possible choices of at+1 while following the

current ǫ-greedy policy πt+1:

Q
ExpSarsa(λ)
Target (st, at) = rt + γ{(1− λ)Q(st+1, at+1) +

λ
X

a∈A

P{a|st+1, πt+1}Q
ExpSarsa(λ)
Target (st+1, a)}.

This alteration leads to a reduced variance in the update, as a sampled action

value is now replaced with a smoothed-out estimate. It is shown by van Seijen et al.

(2009) that like Sarsa(0), ExpSarsa(0) can also be made to converge to the optimal

policy in discrete, finite MDPs. Q-learning(λ) differs from Sarsa and ExpSarsa in that

it is an off-policy method: rather than learning the action value function of the policy

being followed, πt, Q-learning(λ) seeks to directly learn the action values of the optimal

policy π∗. This objective is achieved by computing the target as follows:

Q
Q-learning(λ)
Target (st, at) = rt + γ{(1− λ) max

a∈A
Q(st+1, a) + λQ

Q-learning(λ)
Target (st+1, at+1)}.

Table 3 Summary of parameters used by methods within VF. The last column shows the
ranges over which we tune each parameter.

Parameter Controls: Range

λ Eligibility traces [0, 1]
α0 Initial learning rate [0.1, 1]
ǫ0 Initial exploration rate [0.1, 1]
θ0 Initial weights [−10.0, 10.0]
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Sutton and Barto (1998, see p. 184) refer to the update rule above as a “näıve”

implementation of Q-learning with eligibility traces, because the rule lacks technical

justification as a proper TD learning update. By contrast, there are some sound vari-

ations of Q-learning with eligibility traces (Watkins, 1989; Peng and Williams, 1996),

under which updates additionally have to account for whether chosen actions were

greedy or non-greedy. We refer the reader to the Ph.D. thesis of Rummery (1995, see

ch. 2) for an excellent presentation of various TD update rules. Note that Rummery

refers to Sarsa as “modified Q-learning”, and to Expected Sarsa as “summation Q-

learning”. It would exceed the scope of this article to undertake an extensive study

comparing all possible variants of TD update rules. Rather, a novel contribution of our

experiments is to consider three among them — Sarsa(λ), ExpSarsa(λ), and (näıve)

Q-learning(λ) — in the presence of function approximation and partial observability.

Indeed our results show that under this setting, hitherto uncharacterized patterns in

performance emerge.

As with Sarsa(λ), we parameterize ExpSarsa(λ) and Q-learning(λ) to control their

learning and exploration rates, as well as their initial weights. The corresponding pa-

rameters, α0, ǫ0 and θ0, are summarized in Table 3. Henceforward we drop the “λ”

from Sarsa(λ), ExpSarsa(λ), and Q-learning(λ), and refer to these methods simply as

Sarsa, ExpSarsa, and Q-learning, respectively. We do so to highlight that these meth-

ods are no longer only parameterized by λ in our experiments — so are they by α0,

ǫ0, and θ0.

Note that setting w > 1 in our parameterized learning problem introduces general-

ization, and further, setting χ < 1 reduces the expressiveness of the function approx-

imator. Thus, in general, the approximate architectures used are incapable of repre-

senting the optimal action value function Q∗. Even with full expressiveness (χ = 1),

if using generalization (w > 1), methods from VF are not guaranteed to converge to

the optimal action value function. And even if these methods approximate the action

value function well, as defined through the Bellman error, greedy action selection might

yet pick suboptimal actions in regions of inaccurate approximation, resulting in low

long-term returns (Kalyanakrishnan and Stone, 2007).

A bulk of the research in RL with linear function approximation has been in the

context of prediction: estimating the value function of a fixed policy (without policy

improvement). An early result due to Sutton (1988) establishes that TD(0) with linear

function approximation converges when the features used are linearly independent;

Dayan and Sejnowski (1994) extend this result to TD(λ), ∀λ ∈ [0, 1], while Tsitsiklis

and Van Roy (1997) show convergence for the more realistic case of infinite state spaces

and linearly dependent features. Although most results for the convergence of linear

TD learning are for estimating values of the policy that is used to gather experiences,

the more general (and potentially useful) case of off-policy learning has also been

addressed (Precup et al., 2001; Sutton et al., 2009).

The problems in learning approximate value functions on-line primarily arise due

to the nonstationarity and bias in the targets provided to the function approxima-

tor (Thrun and Schwartz, 1993). The best theoretical guarantees for learning control

policies with approximate schemes come with several restrictions. Most results are lim-

ited to linear function approximation schemes; in addition some make demands such

as Lipschitz continuity of the policy being learned (Perkins and Precup, 2003) and fa-

vorable initial conditions (Melo et al., 2008). Results tend to guarantee convergence of

certain updating schemes, but invariably lack desirable guarantees about the long-term
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reward that will be accrued at convergence (Sabes, 1993; Perkins and Pendrith, 2002;

Perkins and Precup, 2003).

In recent work, Maei et al. (2010) introduce the Greedy-GQ algorithm, which prov-

ably converges while making off-policy learning updates to a linear function approxi-

mator. Unfortunately, Greedy-GQ requires that the policy followed while learning stay

fixed, preventing the agent from actively exploring based on the experiences it gathers.

Thus, ǫ-greedy exploration, with ǫ < 1, violates the assumptions needed for Greedy-GQ

to converge; our informal experiments confirm that such a version of Greedy-GQ does

not perform on par with the other methods we consider within the VF class. Thus, we

do not include Greedy-GQ in our extensive comparisons.

3.2 Policy Search (PS) Methods

We include three methods from the PS class in our study: the Cross-entropy method

(CEM) (de Boer et al., 2005), the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) (Hansen, 2009), and a genetic algorithm (GA). In addition we implement

random weight guessing (RWG) to compare as a baseline.

CEM is a general optimization algorithm that has been used effectively as a policy

search method on RL problems (Szita and Lőrincz, 2006). In our linear representation,

the vector of weights constitute the policy parameters to be adapted. The objective

function, or “fitness” function, to be maximized is the expected long-term reward

accrued by following the greedy policy that is derived from the weights. An iterative

algorithm, CEM maintains and updates a parameterized distribution over the multi-

dimensional search space. On each iteration, a population of #pop points is sampled

from the current distribution. Each point is evaluated, and the µ points with the highest

fitness values are used to determine the distribution parameters for the next iteration.

The update rule is such that with time the variance of the distribution shrinks and its

mean gravitates towards regions of the parameter space with high fitness values. As

is a common choice, in our experiments, we use a Gaussian distribution to generate

sample points. We initialize the mean of this distribution to be the zero vector; along

each dimension the variance is set to 1 (with no covariance terms). The update rule

for Gaussian distributions is such that at every iteration, the updated distribution

has as its mean and variance the sample mean and variance of the µ selected points

(independently for each parameter). In general the update can also depend on the

current distribution’s mean and variance; further, noise can be added to the variance

at each iteration to prevent premature convergence (Szita and Lőrincz, 2006). We do

not implement these variations in our experiments as they do not appear to have a

significant effect in our domain.

Like CEM, the CMA-ES method also employs the principle of updating a distri-

bution at each generation to maximize the likelihood of the µ points with the high-

est fitness values being generated. However, unlike CEM, CMA-ES tracks covariances

across dimensions and actively monitors the search path in the parameter space lead-

ing up to the current generation. Handling several aspects in the search procedure,

CMA-ES is a fairly sophisticated optimization technique; we refer the reader to de-

scriptions from Hansen (2009) and Suttorp et al. (2009) for details. Nevertheless, we

find it surprisingly straightforward to implement the algorithm based on existing code,
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which automatically sets most of the method-specific parameters.4 We set the initial

distribution identically to the one set under CEM.

We implement GA in a manner akin to CEM and CMA-ES. On each generation,

we spawn and evaluate #pop policies; of these, the µ with the highest fitness values

are selected to generate the next population. Specifically, pairs are chosen uniformly at

random from the selected µ and crossed over to produce two offspring each. Policies are

real-valued vectors over the space of parameters searched. Each parameter, restricted

to the interval [−1, 1], is represented using a 32-bit Gray-coded string. To implement

crossover between two individuals, the bit strings corresponding to each parameter

are cut at a random location and matched across individuals, thereby yielding two

offspring. To implement mutation, individuals are picked from the population with a

small probability (0.05), and once picked, have each bit flipped with a small probabil-

ity (0.1). Both under CEM and GA, we set µ, the number of policies selected every

generation to seed the next, to 15% of the population size #pop. Experiments suggest

that these methods are not very sensitive to µ values in this vicinity. CMA-ES uses a

default value for µ depending on #pop and the number of parameters searched.

In general, PS methods can work with a variety of representations. An illustra-

tive example is the PS framework implemented by Kohl and Stone (2004) to optimize

the forward walking speed of an Aibo robot. The gait they design has parameters

describing trajectory positions and timings, which are combined using manually de-

signed sets of rules. Evolutionary computation has been a particularly popular choice

for PS; in particular several neuro-evolutionary techniques have been tested on control

tasks (Gomez and Miikkulainen, 1999; Stanley, 2004; Metzen et al., 2008). Typically the

policy is represented using a neural network, whose topology and weights are evolved

to yield policies with higher values.

In order to maintain a fair comparison with the VF methods in this study, we en-

force that the methods chosen from PS employ the same representation, under which

real-valued parameters are to be optimized (Section 2.3). In principle numerous evo-

lutionary and optimization techniques apply to this problem: among others, amoeba,

particle swarm optimization, hill climbing, and several variants of genetic and “esti-

mation of distribution” algorithms. The reason we choose CEM and CMA-ES in our

comparison is due to the several successes they have achieved in recent times (Szita and

Lőrincz, 2006, 2007; Hansen et al., 2009), which partly owes to their mathematically-

principled derivation. We implement GA on the grounds that although it optimizes

exactly the same parameters, it employs a bit string-based internal representation

during its search, and thus is qualitatively different. Note that all the methods de-

scribed above only use the ranks among fitness values in a generation to determine

the next. In this manner, these methods differ from canonical policy gradient methods

for RL (Sutton et al., 2000; Baxter and Bartlett, 2001; Kakade, 2001), which rely on

the of gradients with respect to the policy parameters to identify a direction in the

parameter space for policy improvement. Our policy is not analytically differentiable

since it is deterministic.

The three PS methods described above take two parameters, listed in Table 4. Since

fitness is defined as the expected long-term reward accrued by a policy, we estimate it

by averaging the returns from #trials episodes. The other method-specific parameter,

#gens, is the number of generations undertaken during the learning period. As a

consequence, note that if the total number of training episodes is U , the population

4 See: http://www.lri.fr/~hansen/cmaes_inmatlab.html.
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Table 4 Summary of parameters used by methods from PS. The last column shows the ranges
over which we tune each parameter. The range shown for #trials is used when the total number
of episodes is 50,000, as in a majority of our experiments (see section 4). The range is scaled
proportionately with the total number of training episodes.

Parameter Controls: Range

#trials Samples per fitness evaluation [25, 250]
#gens Generations [5, 50]

size in each generation is given by U
#trials×#gens . Under RWG, we repeatedly generate

policies, evaluate each for #trials episodes, and retain the policy with the highest

fitness. Informal experimentation shows that it is more effective to sample policies based

on a Gaussian distribution for each parameter, rather than a uniform distribution.

4 Experiments and Results

In this section, we present experimental results. First, in Section 4.1, we describe our

experimental methodology. In Section 4.2, we perform comparisons within the VF and

PS classes to pick representative methods from each. These representative methods are

further compared across a series of experiments in Sections 4.3 through 4.7 to ascertain

their interactions with parameters of the learning problem.

4.1 Experimental Methodology

As defined in Section 2, a learning problem is fixed by setting s, p, σ, χ, w, and a

random seed. Additionally, before conducting an experiment, we fix U , the total num-

ber of learning episodes conducted. Recall from tables 3 and 4 that learning methods

themselves have parameters: λ, α0, ǫ0, θ0, #trials, and #gens. In some experiments,

we study the learning performance at fixed values of these method-specific parame-

ters. However, note that even for a fixed method (say Sarsa), its best performance

at different problem settings will invariably be achieved under different settings of its

method-specific parameters (λ, α0, ǫ0, θ0). In response we devise an automatic search

procedure over the method-specific parameter space (4-dimensional for Sarsa) to find

a configuration yielding the highest learned performance for a given problem instance

and number of training episodes.

The search procedure — described schematically in Figure 4 for a 2-dimensional

parameter space — involves evaluating a number of randomly generated points in the

space and iteratively halving the search volume, always retaining the region with the

highest performance density. The procedure is necessarily inexact due to stochasticity

in evaluations, and since performance might not be “well-behaved” over the region

searched. Yet in practice we find that with sufficient averaging (2000 points per gener-

ation) and enough splits (5 times the number of dimensions searched), the procedure

yields fairly consistent results. We suffix the method-specific parameter configurations

returned by the search “∗” to indicate that they have been optimized for some task

setting and number of training episodes. Thus, Sarsa∗ refers to an instance of Sarsa

identified through the search procedure, its parameters being λ∗, α∗

0, ǫ∗0, and θ∗0 . Under

Sarsa(λ)∗, λ is fixed, and only α0, ǫ0, and θ0 are optimized.
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Fig. 4 Illustration of a search over two parameters, p1 and p2. Initial ranges for each parameter
are specified as inputs to the search. To begin, points are sampled uniformly from within
the specified ranges. At each sampled point, a single learning run is conducted and its final
performance recorded. Subsequently a split is performed to halve the search volume, retaining
an axis-aligned region with the highest density of performance among all such regions. The
process is repeated several times: with each split, attention is focused on a smaller part of the
search space empirically found to contain the most successful learning runs. Note that at each
stage, any parameter could lead to the best split (p2, p1, and p1 at stages 1, 2, 3, respectively,
in the illustration). At termination the midpoint of the surviving volume is returned.

For clarity, we enumerate here the sequence of steps undertaken in each of our

experiments.

1. We fix learning problem parameters s, p, σ, χ, and w.

2. We fix the total number of training episodes U .

3. Either we manually specify an instance of a learning method, or search for one, as

described above, to maximize performance for the problem parameters and training

episodes set in steps 1 and 2.

4. With the chosen method instance, we conduct at least 1,000 independent trials of

learning runs. Each trial is fixed by setting a different random seed, which can gen-

erate additional seeds for the learning problem (to determine features and rewards)

and the learning method (to explore, sample, etc.).

5. Each learning trial above results in a fixed policy. We estimate the performance

of this policy through 1,000 Monte Carlo samples. (Although sometimes a policy

can be evaluated exactly through dynamic programming, the presence of function

approximation and partial observability make it necessary to estimate performance

through sampling.) Note that methods from VF and PS are both evaluated based

on a greedy policy with respect to the learned weights.

6. Since all the rewards in our parameterized learning problem are non-negative, we

find that problems with larger state spaces invariably lead to policies with higher

absolute rewards. To facilitate meaningful comparison across problems with differ-

ent parameter settings, we linearly scale the performance of a policy such that 0

corresponds to the value, under the same settings, of a random policy, and 1 to that

of an optimal policy. In our graphs, we plot this normalized performance measure.

Note that our careful design of the task MDP allows us to compute the perfor-

mance values of random and optimal policies at each setting, even if the settings

themselves preclude the learning of optimal behavior by an agent. Policies that are

“worse than random” have normalized performance values less than zero.

7. We report the normalized performance achieved (over all trials), along with one

standard error (typically these are small and sometimes difficult to distinguish

visually in our graphs). Note that standard errors do not apply to the results of
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our parameter search, such as to find λ∗ under some problem instance. For any

task instance, the method-specific parameter search is conducted exactly once.

In summary: the steps outlined above aim to provide each method the best chance

of success for a given problem instance and training time, and then to fairly evaluate

and compare competing methods. Having specified our methodology, we proceed to

describe results from our experiments.

4.2 Picking Representative Methods and Setting the Training Period

The first phase in our experiments is to pick representative learning methods from the

VF and PS classes. We now present comparisons among methods from these classes.

We also describe how we set the number of training episodes for learning runs in our

study.

4.2.1 Picking a Representative Method from VF

In comparing methods from the VF class, we observe that the method-specific param-

eter with the most dominant effect on performance is the setting of initial weights, θ0.

For illustration consider Figure 5. In the experiments reported therein, we compare

Sarsa(0), ExpSarsa(0), and Q-learning(0). For all these methods, we find that a broad

range of the parameters α0 and ǫ0 yield policies with high performance; we manu-

ally pick favorable settings from among these ranges. Q-learning(0) and Sarsa(0) use

α0 = 0.8, ǫ0 = 0.8, while ExpSarsa(0) uses α0 = 0.8, ǫ0 = 0.2. The total number of

training episodes U is set to 50,000.

The three methods show qualitatively similar patterns in performance as θ0 is var-

ied. In Figure 5(a), we find that all of them achieve near-optimal behavior at large

settings of θ0, directly reflecting the merits of optimistic initialization (Even-Dar and

Mansour, 2001). Action values tend to lie in the range [0, 20]; correspondingly we notice

that “pessimistic” initialization of weights to lower values leads to noticeable degra-

dation in performance. Note that the settings in Figure 5(a) correspond to a fully ex-

pressive tabular representation with no generalization. As we introduce generalization

by increasing w to 5 (Figure5(b)), we observe a significant change in trend: both very

high and very low initial weights lead to a marked decrease in the final performance.

This trend persists as the expressiveness χ is reduced (Figure 5(c)).

In figures 5(b) and 5(c), it is apparent that ExpSarsa(0) falls below Sarsa(0) and

Q-learning(0) at most settings of θ0. We posit that since it performs a weighted average

over all next state-action values, updates under ExpSarsa(0) are likely to propagate

error from state-actions that are encountered less frequently. For a perfect tabular

representation, such as in Figure 5(a), van Seijen et al. (2009) prove that ExpSarsa(0)

updates have the same bias, but a lower variance, compared to updates under Sarsa(0).

However, our results appear to suggest that when generalization is present (as w is

increased), and learning starts with a stronger initial bias (by setting θ0 farther away

from the true action values), ExpSarsa(0) suffers more from the error in its updates.

Extending this argument, we could expect ExpSarsa to perform worse at high values

of α0 and ǫ0 when generalization is used. Shortly we present the evidence for such a

phenomenon.
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(b) χ = 1, w = 5.
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(c) χ = 0.6, w = 5.

Fig. 5 [s = 10, p = 0.2, σ = 0.] Plots showing the effect of the initial weights θ0 on the
performance of on-line value function-based methods. Note the irregular spacing of points
on the x axis. Plot (a) corresponds to an exact tabular representation with no generalization.
Generalization is introduced in (b) by increasing w; additionally the expressiveness χ is reduced
in (c).

We design three problem instances to further investigate differences between Sarsa,

ExpSarsa, and Q-learning. Table 5 summarizes these problem instances. Instance I1
corresponds to a fully-expressive tabular representation with no generalization, under

which all three methods enjoy provable convergence guarantees. Expressiveness is re-

duced and generalization introduced in I2. While I1 and I2 are both devoid of state

noise, I3 is identical to I1 except for its higher setting of σ.

Figure 6 plots the performance of Sarsa∗, ExpSarsa∗ and Q-learning∗ on I1, I2,

and I3. Notice that under I1, all the methods achieve near-optimal behavior at the end

of 50,000 episodes of training. While optimal behavior is not to be expected under I2,

it becomes apparent that ExpSarsa∗ trails the other methods in this problem (p-value

< 10−4). This finding parallels the inference we draw from Figure 5: generalization and

function approximation adversely affect ExpSarsa, as its learning updates propagate

more bias than either Sarsa or Q-learning.

Recall that I3 is identical to I1, except that it introduces state noise. Thus, when

compared with I1, we observe that all three methods suffer a significant drop in perfor-

mance under I3. Yet, the introduction of state noise does not appear to disadvantage

any of the methods more than the others. Table 6 reports the optimized method-specific

parameters found by our search strategy under the three problem instances. From the

table, we see that the values of λ∗ found for all three methods under I3 are signifi-

cantly higher than the values found under I1 and I2. We may infer that reducing the

reliance on bootstrapped estimates (by setting high values of λ) counteracts the error

introduced in TD updates due to state noise. We also observe from Table 6 that the

Table 5 Parameter settings for illustrative problem instances I1, I2, and I3.

Problem instance s p χ w σ

I1 10 0.2 1 1 0
I2 10 0.2 0.5 7 0
I3 10 0.2 1 1 4
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Fig. 6 Comparison of the performance of different VF methods on the three problem instances
from Table 5. Under each instance, and for each of the methods — Sarsa, Q-learning, and
ExpSarsa — a systematic search (see Section 4.1) identifies the method-specific parameter
settings (α0, ǫ0, θ0, and λ) yielding the highest performance after 50,000 episodes of training.
The methods are marked “∗” as they are run under these optimized parameter settings.

θ∗0 values found by our search strategy for each method and problem are as one may

expect based on Figure 5. These results affirm the reliability of our search strategy.

Predominantly we find that the VF methods compared above are not very sensitive

to the learning rate parameter α0 and the exploration parameter ǫ0 within the ranges

in which we optimize them: [0.1, 1] for both parameters. The only significant exception,

to which we alluded earlier, is the case of ExpSarsa under I2, which strongly favors

lower α0 and ǫ0 settings. For reference, we provide graphs plotting the performance of

VF methods as a function of α0 and ǫ0 in Appendix A.

In summary: we find that Sarsa and Q-learning (albeit with a “näıve” implemen-

tation of eligibility traces) perform equally well on all our experiments; both methods

outperform ExpSarsa on problems in which generalization is employed. We pick Sarsa

as a representative method from the VF class for our subsequent experiments (Sec-

tions 4.3 through 4.7).

4.2.2 Picking a Representative Method from PS

We reuse problem instances I1, I2, and I3 to compare methods from the PS class.

As noted in Section 3.2, two parameters have to be set for methods from this class:

#trials and #gens. Optimizing over these parameters, we plot the performance of

CEM∗, CMA-ES∗, GA∗ and RWG∗ in Figure 7. Unlike with the VF class, the ordering

among the methods from PS stays consistent across the problem instances. In all

cases, CEM∗ and CMA-ES∗ outperform GA∗ and RWG∗ (p-value < 10−4). However,

CEM∗ and CMA-ES∗ themselves register virtually identical performance: they cannot

Table 6 For each of three methods — Sarsa, Q-learning, and ExpSarsa — the method-specific
parameters yielding the highest performance (at 50,000 episodes of training), under problem
instances I1, I2 and I3. Figures are rounded to one place of decimal.

Problem Sarsa∗ Q-learning∗ ExpSarsa∗

instance λ α0 ǫ0 θ0 λ α0 ǫ0 θ0 λ α0 ǫ0 θ0

I1 0.3 0.6 0.6 7.0 0.2 0.3 0.7 8.7 0.2 0.5 0.7 6.7
I2 0.1 0.7 0.7 -1.0 0.2 0.7 0.8 0.8 0.1 0.9 0.2 0.8
I3 0.9 0.5 0.5 8.9 0.9 0.2 0.9 6.4 0.8 0.6 0.8 6.7
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Fig. 7 Comparison of the performance of different PS methods on the three problem instances
from Table 5. Methods are marked “∗” to denote that method-specific parameters — #trials

and #gens (except for RWG) — have been optimized for each task instance.

be separated with statistical significance on instances I1 and I3, although in I2, CMA-

ES∗ emerges the winner (p-value < 0.02).

It is worth noting that whereas all the VF methods in our study achieve their

highest performance on instance I1, all the methods from PS achieve theirs on I2.

50,000 episodes is a relatively short duration of training for PS methods, which do

not make effective use of individual transition samples, but rather, aggregate them in

evaluating fitness. Greater generalization across the state space (as in I2, where w = 5)

enables them to learn more quickly. In Section 4.6, we observe that if optimized for

500,000 episodes, PS methods do perform better at w = 1.

The best parameter settings found for each PS method, under the three chosen

problem instances, are listed in Table 7. Although we search over #trials and #gens,

note that thereby we implicitly set up a search over the population size #pop used in ev-

ery generation. This is a consequence of the relation that #trials×#gens×#pop = U ,

the total number of training episodes. From the table, we observe that CMA-ES∗ typi-

cally employs a smaller population size than CEM∗, while GA∗ maintains significantly

larger population sizes.

Appendix B displays the performance of the various PS methods as a function of

their input parameters. We observe a noticeable variance in the performance of all

the methods over the parameter ranges considered. While CMA-ES∗ and CEM∗ have

comparable performance on all three problem instances, it is apparent that CMA-ES is

more robust to parameter settings; i.e., it registers a higher performance over a wider

range of settings. This makes CMA-ES overall a slightly more favorable candidate

Table 7 For policy search methods, the method-specific parameters yielding the highest per-
formance (at 50,000 episodes of training) for problem instances I1, I2, and I3. Figures are
rounded to the nearest integer. Under CEM, CMA-ES, and GA, the parameters searched are
#gens (“#g”) and #trials (“#t”). These parameters automatically fix the population size
(“#p”), which is suffixed with “D” to denote that it is implicitly derived. Under RWG, only
#t is optimized; #g is implicitly derived. Derived parameters values are shown for reference.

Problem CEM∗ CMA-ES∗ GA∗ RWG∗

instance #g #t #pD #g #t #pD #g #t #pD #gD #t

I1 18 44 63 24 61 34 9 49 113 113 444
I2 15 64 52 20 111 23 22 17 134 327 153
I3 10 113 44 17 80 37 15 30 111 125 400
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than CEM from the class of PS methods. Therefore, we select CMA-ES for our further

experiments.

4.2.3 Setting the Training Period

Even if the problems in our experiments are themselves reasonably small, the extensive

search and evaluation processes incur a significant amount of time during each experi-

ment. One factor that plays a major role in determining the experimental running time

is U , the total number of training episodes in each run. Setting U = 50, 000, as we have

in the experiments reported thus far, it takes us roughly 1-2 hours to complete a single

search and evaluation procedure, such as, for example, identifying Sarsa∗ and evaluat-

ing it under I2. In this duration, we have roughly 200 processes running in parallel on

a computing cluster with 2GHz CPUs. In general we do not find it feasible to conduct

extensive experimentation under higher values of U (although we do undertake such

investigation under some interesting cases, such as in Section 4.6).

To gauge the implications of consistently setting U = 50, 000 in our subsequent

comparisons, we run a single suite of experiments at multiple settings of U . Figure 8

shows the performance of Sarsa∗, Q-learning∗, ExpSarsa∗, CEM∗, and CMA-ES∗; un-

der problem instances I1, I2, and I3; optimized for various settings of U . As expected

we find that all the methods improve their performance with longer training periods.

The gains from a longer training period are more marked among the methods from PS,

as in general, methods from VF appear to plateau within a few thousands of episodes.

We observe from Figure 8 that under all problem instances, the trend within meth-

ods in VF remains roughly the same at all values of U : under I1, the methods all

achieve comparable performance; under I2, ExpSarsa∗ performs poorest; and under I3,

Q-learning∗. Likewise, no clear winner among CEM∗ and CMA-ES∗ emerges in any

of the instances, for any setting of U . Therefore, we may conclude that our choice of

picking Sarsa∗ and CMA-ES∗ for further comparisons is justified. However, the choice

of U does affect comparisons between Sarsa∗ and CMA-ES∗ themselves. Notice that

up to 25,000 episodes, Sarsa∗ consistently outperforms CMA-ES∗. Yet, from 50,000

episodes onward, CMA-ES∗ overtakes Sarsa∗ on I2 (p-value < 10−3). Under I1 and

I3, CMA-ES∗ narrows the margin with Sarsa∗ at U = 1, 000, 000, although it does not

reach comparable performance.

The trends in Figure 8 inform our interpretation of the results to follow in the

remainder of this section. In general we expect that Sarsa will not significantly improve

its performance beyond 50,000 episodes of training, whereas CMA-ES consistently

improves at least up to 1000,000 episodes. Even so, in several instances, we find that

CMA-ES outperforms Sarsa even at 50,000 episodes, validating this choice of U as a

meaningful comparison point between the methods.

In summary: our “within class” comparisons in VF and PS provide convincing ev-

idence that Sarsa and CMA-ES are respectively the best methods to represent these

classes in our parameterized learning problem (except that Q-learning performs as

well as Sarsa in VF). We now proceed to compare these methods as relevant problem

parameters are varied. In each comparison (excepting cases in Section 4.6), the nor-

malized performance of these methods after 50,000 episodes of training is considered

while evaluating them.
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Fig. 8 Plots showing the performance of different learning methods as the number of training
episodes U is varied. Each plot corresponds to a problem instance from Table 5. Note the
irregular spacing of points on the x axis. At each point, the best performance achieved by three
learning methods from VF (Sarsa∗, Q-learning∗, and ExpSarsa∗) and two from PS (CEM∗,
CMA-ES∗) is shown.

4.3 Problem Size and Stochasticity

In our first set of “VF versus PS” experiments, we evaluate our learning methods as the

size of the state space and the stochasticity of transitions in the task MDP are varied.

Conjunctions of three settings of s (6, 10, 14) and three settings of p (0, 0.2, 0.4) are

compared; results are plotted in Figure 9. With complete expressiveness (χ = 1), no

generalization (w = 1), and full observability (σ = 0), all nine cases are akin to learning

with a classical “tabular” representation.

The most striking observation from the plots in Figure 9 is the disparity in the

learning rates of Sarsa∗ and CMA-ES∗. In all nine cases, Sarsa∗ reaches near-optimal

behavior, and typically so within a few thousands of episodes. At 50,000 episodes of

training, in none of the problems does CMA-ES∗ match the performance of Sarsa∗ (p-
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Fig. 9 [χ = 1, w = 1, σ = 0.] Sarsa∗ and CMA-ES∗ (optimized for 50,000 episodes of training)
compared at different settings of s and p. Unlike other plots in the article, in these learning
curves, we plot one standard deviation in the performance (instead of one standard error).

value < 10−4). The gap between the methods is to be expected, as by making learning

updates based on every transition, VF methods make more efficient use of experience

for learning than PS methods do. Note that Sarsa is still on-line and model-free; we

expect model-based methods (Sutton, 1990) and batch methods (Lin, 1992; Lagoudakis

and Parr, 2003) to further improve sample efficiency.

For both Sarsa∗ and CMA-ES∗, we notice a decrease in performance as s is in-

creased. This decrease is more marked for CMA-ES∗, as the dimensionality of the

parameter space it searches increases quadratically with s. The effect of the stochas-

ticity parameter in widening the gap between Sarsa∗ and CMA-ES∗ is also significant.

The error bars plotted in the graphs show one standard deviation in performance (in

all other graphs in the article, one standard error is shown). We observe that for both

methods, the variance in performance increases as p is increased, and further, that

for any given problem, CMA-ES∗ displays a slightly higher variance than Sarsa∗. As

described in Section 2, note that even at p = 0, there is stochasticity in the task, as

the start state for each episode is picked uniformly at random.

Recall that the method-specific parameters of Sarsa∗ and CMA-ES∗ have been op-

timized for each problem and training period. While we do not note any significant

patterns among the method-specific parameters thereby found under Sarsa∗, we note
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that under CMA-ES∗, #trials∗ gets consistently higher as p is increased. For example,

at s = 10, the settings of #trials∗ found by our search procedure are 38, 77, and

152 for p = 0, p = 0.2, and p = 0.4, respectively. In other words, CMA-ES∗ benefits

from more evaluation trials in evaluating fitness values as the task stochasticity in-

creases. Indeed recent research addresses the problem of tuning #trials in an adaptive

manner (Heidrich-Meisner and Igel, 2009).

The primary inference from the set of experiments above is that Sarsa has significant

advantages both in terms of the performance achieved and the variance in performance

as problem size and stochasticity are increased. Not only is CMA-ES slower to learn, it

demands better tuning of #trials across different problem instances. To characterize

the reasons underlying these observations, we turn to Cobb (1992), who separates the

inductive biases in a reinforcement learner into “language” and “procedural” biases.

The former corresponds to the representation used by the learner, which in this study,

we have fixed to be the same for the methods compared. VF and PS methods are

essentially separated by their procedural bias: how they updates weights in the repre-

sentation. The language bias in the problem instances above — χ = 1, w = 1, σ = 0

— strongly favors the procedural bias of Sarsa. How would the methods fare if the

language bias is changed? The experiments to follow examine the effects of state noise,

generalization, and expressiveness.

4.4 Partial Observability

In our second set of experiments, we study the effect of partial observability by increas-

ing σ. We notice a conjunctive relationship between σ and w, the generalization width.

In response we conduct experiments with three settings of σ (0, 2, 4) and three settings

of w (1, 5, 9). Results are plotted in Figure 10: in each graph therein the performance

of Sarsa(λ)∗ is plotted at six values of λ (0, 0.2, 0.4, 0.6, 0.8, 1). The performance of

CMA-ES∗ (which does not depend on λ) is also shown.

In general the best memoryless policies for Partially Observable MDPs (POMDPs)

can be stochastic (Singh et al., 1994). Perkins and Pendrith (2002) show that in order

to converge in POMDPs, it is necessary for methods such as Sarsa and Q-learning

to follow policies that are continuous in the action values, unlike the ǫ-greedy policies

used by the VF methods in our experiments. However, we do not observe any divergent

behavior for Sarsa(λ) in the experiments reported here.

We notice that when σ = 0 and w = 1, the effect of λ on the performance of

Sarsa(λ)∗ is not very pronounced. As soon as either σ or w is increased, intermediate

values of λ predominantly yield the highest performance for Sarsa(λ)∗. These results

echo the findings of Loch and Singh (1998), who demonstrate that deterministic poli-

cies learned using Sarsa(λ) with ample exploration perform quite well on a suite of

benchmark POMDPs. Key to their success is the high values of λ used (between 0.8

and 0.975), which weight true returns from actions much higher than estimated values.

As the generalization width w is increased, notice that there is no longer a single

winner between Sarsa∗ and CMA-ES∗: VF methods no longer dominate PS methods

when observability of state is limited. An intriguing trend that becomes apparent from

Figure 10 is that the performance of Sarsa(λ)∗ is not monotonic with respect to w: for

most settings of σ and λ, the highest performance is achieved at w = 1, followed by

w = 9, with the lowest performance at w = 5. In Section 4.6, we find further evidence of
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Fig. 10 [s = 10, p = 0.2, χ = 1.] Sarsa(λ)∗ and CMA-ES∗ compared at different settings of
σ and w. Under each plot, six regularly spaced values of λ are chosen and the corresponding
Sarsa(λ)∗ evaluated. CMA-ES∗ appears as a line, as it does not depend on λ.

such anomalous patterns in the performance of Sarsa as w is varied. Interestingly CMA-

ES∗ registers its highest performance, for any fixed σ, at w = 5 (w = 9 comes a close

second). This trend arises as 50,000 episodes is a relatively short training duration for

PS methods in this domain; generalization promotes quick initial learning. Experiments

in Section 4.6 confirm that with 500,000 training episodes, CMA-ES performs best at

w = 1.

A recent variant of Sarsa(λ) applied to POMDPs is SarsaLandmark (James and

Singh, 2009), in which λ is set to 0 (full bootstrapping) when special “landmark”

states (which are perfectly observable) are visited, but remains 1 at all other times

(Monte Carlo). SarsaLandmark is not directly applicable in our domain as the agent

receives no special information about landmark states. In recent work, Downey and

Scanner (2010) propose a method to adaptively tune λ while learning. Formally derived

under a Bayesian framework, their algorithm — Temporal Difference Bayesian Model

Averaging (TD-BMA) — is shown to outperform Sarsa(λ) for any fixed value of λ

on illustrative grid-world tasks. Our results highlight that tuning λ is of particular

relevance in problems with state noise and generalization; our parameterized learning

problem therefore becomes an ideal testbed for evaluating adaptive approaches.

In Table 8, we report the best initial weights, θ∗0 , found for Sarsa(λ)∗, under various

settings of λ, σ, and w. The most noticeable pattern from the table is the favor for
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Table 8 [s = 10, p = 0.2, χ = 1.] θ∗0 (initial weights under Sarsa(λ)∗) for different problem
instances. Each cell in the table corresponds to a setting of σ, w (problem parameters), and
λ (Sarsa parameter); entries correspond to the value of θ0 found by searching for Sarsa(λ)∗.
Note that each search is only performed once.

w
λ = 0 λ = 0.4 λ = 1.0

σ = 0 σ = 2 σ = 4 σ = 0 σ = 2 σ = 4 σ = 0 σ = 2 σ = 4
1 8.7 7.4 5.0 8.0 7.9 7.8 7.8 7.5 9.6
5 0.5 0.0 -0.7 0.3 0.6 1.8 2.1 1.4 1.6
9 -0.3 -0.3 0.6 0.1 0.0 -0.6 0.1 0.5 -0.8

lower settings of θ0 as w is increased. The best initial weights do not appear to change

much as state noise and eligibility traces are varied.

4.5 Expressiveness of Function Approximator

Continuing our study, we conduct experiments to gauge the role of the expressiveness

parameter χ in determining the performance of learning methods. Again, we find no

single winner among Sarsa∗ and CMA-ES∗ as χ is varied. The results shown in Fig-

ure 11 are under fixed settings: σ = 0 and w = 5. The qualitative nature of the results

does not change as σ and w are varied.

In the learning curve in Figure 11(a), under χ = 1 (which allows the optimal action

value function to be represented), Sarsa∗ displays quick learning to reach a normalized

performance close to 0.9, whereas CMA-ES∗ fails to achieve comparable performance

after 50,000 episodes. By contrast, at χ = 0.4 (Figure 11(b)), we notice that Sarsa∗

suffers a dramatic drop in performance, plateauing at a normalized performance value

close to 0.7. At the same setting of χ, CMA-ES∗ overtakes the learning curve of Sarsa∗

and reaches a significantly higher performance at 50,000 episodes (p-value < 10−4).

As χ is decreased, the representation for the value function and policy becomes

increasingly handicapped. In Figure 11(c), we observe that both under Sarsa and CMA-

ES, performance decreases monotonically as χ is reduced. However, of the two methods,

Sarsa suffers the more significant drop in performance as χ is reduced. Whereas Sarsa
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Fig. 11 [s = 10, p = 0.2, w = 5, σ = 0.] Plots (a) and (b) show learning curves of Sarsa(λ)∗

and CMA-ES∗ at different values of χ. Plot (c) shows the performance achieved after 50,000
episodes of training at different values of χ.
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outperforms CMA-ES for χ ≥ 0.7 (p-value < 10−4), the opposite is true when χ ≤

0.5 (p-value < 10−4). We do not observe any striking trends in the method-specific

parameters of Sarsa∗ and CMA-ES∗ as χ is varied.

To the best of our knowledge, prior literature does not compare methods from VF

and PS while constraining them to use the same representation. Our finding that CMA-

ES is able to achieve good performance even under a representation that is extremely

impoverished for approximating the value function suggests that it is a promising

candidate in a large number of real-world domains in which feature engineering and

representations are deficient. We posit that like the example constructed by Baxter

and Bartlett (2001), many of the cases with χ < 1 allow for the representation of

high-reward policies, but only admit poor approximations of the action value function.

Notice that we do not have any irrelevant features in our learning problem: in the

future it would be useful to incorporate such a setting, which is often encountered in

practice. Non-linear function approximation would be an equally important avenue to

explore.

4.6 Generalization of Function Approximator

In Section 4.4, we noted that the generalization parameter w plays a role in determining

the relative order between Sarsa and CMA-ES at different values of σ. In examining

the effect of w more closely, we notice that although its effect on CMA-ES is fairly

regular, its interaction with Sarsa is less predictable. Figure 12 shows the normalized

performance of these methods at settings of w varying from 1 (no generalization) to

15 (very broad generalization). In Figure 12(a), the total number of training episodes

is set to 50,000, while in Figure 12(b), it is set to 500,000.

We observe that with 50,000 training episodes, CMA-ES∗ performs its best at

w = 3, but with 500,000 episodes, its best performance is at w = 1. We ascribe this

effect to the benefit of generalizing early during the search, which quickly identifies

the most promising actions in localized regions of the state space. With more time it

becomes important to further discriminate among individual states, which it is most

possible with w = 1. It is not surprising that for both methods, the performance begins

to drop sharply for w > 9. Since in this problem, s = 10, some non-terminal cells in
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Fig. 12 [s = 10, p = 0.2, χ = 1, σ = 2.] Performance of Sarsa∗ and CMA-ES∗ at different
values of w, optimized in plot (a) for 50,000 training episodes, and in plot (b) for 500,000
training episodes.



30

the task MDP necessarily get activated by all the tiles present if the tile width exceeds

9. Indeed beyond w = 19 (not shown in figure), no two cells in the MDP remain

distinguishable.

Interestingly Sarsa∗ presents a less regular pattern in performance as w is varied,

as evinced by Figure 12(a). We find that Sarsa∗ is most effective at w = 1, but its

performance suffers a dip until w = 5; again a rise until w = 9; before monotonically

decreasing again. 50,000 episodes is a fairly long duration by VF standards, as apparent

from several learning curves shown in the article (for instance, see Figure 11(a)). It is

clear that the irregular performance pattern of Sarsa∗ is not an artefact of training

time, as the pattern essentially persists at 500,000 episodes of training (Figure 12(b)).

Also, notice the small error bars in both the plots: the pattern is systematic.

We investigate whether the irregular pattern in the performance of Sarsa persists

as the problem size is increased beyond s = 10. Figure 13 (see top row) indeed affirms

that at s = 14 and s = 18, too, multiple local minima emerge in the performance as

w is varied. Curiously, under all three settings of s, we observe that as w is varied,

a correlation exists — up to w < s — between the performance of Sarsa∗ and λ∗,

the eligibility trace parameter optimized for each problem setting. The bottom row

in Figure 13 shows the values of λ∗ under each setting. Observe that for w < s the

local maxima and minima in λ∗ predominantly coincide with those of the normalized

performance (recall that for w ≥ s, states necessarily become aliased).

At present we do not have a conclusive explanation for the phenomenon described

above. Since CMA-ES shows predictable variation with w, we surmise that the variation

shown by Sarsa ultimately arises from its on-line updates to the value function. We

speculate that “edge effects” in our tiling scheme, whereby states on the periphery of

the grid have fewer neighbors, might induce patterns in the trajectory taken by the
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Fig. 13 [p = 0.2, χ = 1, σ = 2.] Analysis of Sarsa∗ as s (columns) and w (x axis in each
plot) are varied. The top row shows the normalized performance achieved at each setting;
correspondingly the bottom row shows λ∗ — the value of λ found by searching for Sarsa∗ —
for the same settings.
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value function. Nevertheless, closer inspection would be necessary to fully explain such

behavior.

In the context of kernel-based methods, Ormoneit and Sen (2002) discuss the “bias-

variance tradeoff” induced by generalization widths. Munos and Moore (2002), and

Sherstov and Stone (2005), devise schemes for setting different generalization widths

in different parts of the state space. Our parameterized learning problem becomes a

valuable testbed to evaluate this line of work, which our results hint needs attention.

4.7 Sequencing Sarsa and CMA-ES

In all our experiments, we find that CMA-ES is significantly slower to learn than Sarsa.

In settings with high values of σ and low values of χ, CMA-ES outperforms Sarsa mainly

because Sarsa reaches a lower asymptote, and not because CMA-ES has any steeper

a learning curve. In our last set of experiments, we examine whether CMA-ES can

be given a boost by initializing it with a policy learned by Sarsa. We abbreviate the

resulting sequencing algorithm “Seq”. Since in our experiments, Sarsa and CMA-ES

are constrained to share a common representation, a straightforward way to initialize

CMA-ES with a policy learned using Sarsa is to set its initial weights to those learned

by Sarsa. Although a raw transfer of weights is not always applicable across different

representations, we conjecture that the resulting technique can still offer insights about

synthesizing the merits of VF and PS methods. Guestrin et al. (2002) adopt a similar

scheme in a multiagent task to transfer weights learned using LSPI to initialize a policy

gradient method. In their experiments, the policy implemented is “softmax” over the

learned action values; in our experiments, CMA-ES inherits a greedy policy.

In principle the method-specific parameters of Seq include all of the method-specific

parameters of Sarsa (λ, α0, ǫ0, θ0) and CMA-ES (#trials, #gens), along with the

number of episodes at which the transfer of weights is effected from Sarsa to CMA-ES.

By definition, then, Seq∗ would always perform at least as well as the better of Sarsa∗

and CMA-ES∗ (by running Sarsa∗ for 50,000 or for 0 episodes, as appropriate). Rather

than search for and evaluate this best instance of Seq, we constrain Seq to (a) use Sarsa∗

and CMA-ES∗, each optimized independently for 50,000 episodes, as its constituents;

and (b) transfer weights from Sarsa∗ to CMA-ES∗ after 2,500 episodes of training.

Thus, Seq essentially amounts to running CMA-ES∗, but starting from a potentially

useful initialization. The initial variance along each parameter to be optimized by

CMA-ES∗ after the switch is set to the overall variance of the weights themselves.

Figure 14 compares Seq with Sarsa∗ and CMA-ES∗ under problem settings in which

σ and χ are varied. Under all settings, we find that Seq performs at least as well as

CMA-ES, if not marginally better. Thorough “head-to-head” comparisons between the

three methods are plotted in Figure 15. Each plot therein compares two of the methods.

For specified settings of σ and χ, the method registering higher performance is marked

if the evidence is statistically significant (p-value < 0.01). Figure 15(a) identifies regions

of the problem space suiting Sarsa∗ and CMA-ES∗. From Figure 15(b), we observe that

Seq marginally extends the territory claimed by CMA-ES∗. Indeed Seq outperforms

CMA-ES∗ in regions where σ is low and χ is high, and performs at least as well in the

remainder of the problem configurations (Figure 15(c)).

As discussed in Section 4.2, CMA-ES requires several times the training time of

Sarsa to achieve comparable performance. The experiments reported here suggest that

when time is constrained, and yet CMA-ES can outshine Sarsa, CMA-ES can be further
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Fig. 14 [s = 10, p = 0.2, w = 5.] Sarsa∗, CMA-ES∗, and Seq compared at different settings
of σ and χ. Sarsa∗ and CMA-ES∗ are optimized independently at each problem setting; Seq
combines the methods thus tuned (with no further optimization), transferring weights from
Sarsa to CMA-ES after 2,500 training episodes.

 0

 1

 2

 3

 4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ

χ (decreasing)

Sarsa*  CMA-ES*

(a) Sarsa∗ vs. CMA-ES∗

 0

 1

 2

 3

 4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ

χ (decreasing)

Sarsa* Seq

(b) Sarsa∗ vs. Seq

 0

 1

 2

 3

 4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ

χ (decreasing)

Seq

(c) CMA-ES∗ vs. Seq

Fig. 15 [s = 10, p = 0.2, w = 5.] Three plots showing pairwise comparisons between Sarsa∗,
CMA-ES∗, and Seq at different settings of σ and χ. At each reported setting, one of the methods
is indicated if with statistical significance (p < 0.01), it achieves a higher performance than the
other. At some settings, the methods cannot be thus separated; note that in plot (c), CMA-ES
does not outperform Seq at any of the reported settings of σ and χ.

improved by seeding it with a policy learned by Sarsa. In related work (Kalyanakr-

ishnan and Stone, 2007), we demonstrate the effectiveness of Seq on Keepaway (Stone

et al., 2005), a popular RL benchmarking task. In Keepaway, the function approxi-

mator used is a neural network, whose weights are initially learned using Sarsa(0),

and then transferred to CEM (de Boer et al., 2005). It indeed seems very relevant to

extend the entire range of experiments we have presented in this article to a complex

domain such as Keepaway. The main challenge in such an exercise would be the sheer

time taken for running experiments. Nevertheless, we do hope that future research will

extend our current set of experiments into more complex and realistic domains.

5 Discussion

The extensive suite of experiments reported in Section 4 uncover several interesting pat-

terns characterizing the interaction between problem parameters and method-specific
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parameters in the context of sequential decision making from experience. In this sec-

tion, we highlight some of the main questions thereby brought to relevance.

Generalization: Our results consistently indicate that generalization and function

approximation significantly alter the landscape while evaluating learning algorithms,

in particular those from VF. For instance, Section 4.2 presents conclusive evidence

that ExpSarsa suffers more severely due to the bias introduced by generalization than

either Sarsa or Q-learning. Section 4.6 brings into focus an irregular — yet systematic

— pattern in the performance of Sarsa as the tile width w is increased. Interestingly

this pattern is correlated with the best eligibility trace settings. To the best of our

knowledge, generalization has not been given explicit attention in the context of PS

methods. Our results show that generalization can benefit PS methods, too, when the

training duration is short.

As motivated in Section 1, generalization is necessary in nearly every practical ap-

plication of RL. Thus, the importance of understanding its effects on algorithms cannot

be understated. In future work, we hope to use our experimental framework to probe

more deeply into this subject.

Optimistic Initialization: Of special significance among the ramifications of learn-

ing with generalization is its effect on the common practice of optimistic initialization.

Optimistic initialization (of action values) has long been employed as a mechanism to

promote exploration. In the context of finite MDPs, elegant proofs of convergence of

VF methods have been derived on the basis of optimistic initial values (Even-Dar and

Mansour, 2001; Szita and Lőrincz, 2008). Grześ and Kudenko (2009) provide experi-

mental justification, again on finite (or suitably discretized) MDPs, for schemes that

refine the basic optimistic initialization framework.

Our experiments in Section 4.2 convey that optimistic initialization is only effective

in the fully tabular case: for w > 1, the error introduced into TD updates by high ac-

tion values invariably degrades the performance of VF methods. A question that arises

in response is how we may initialize action values when learning with generalization.

Research in this direction appears particularly relevant to algorithms that are guaran-

teed to reach fixed points under linear function approximation (Perkins and Precup,

2003; Sutton et al., 2009; Maei et al., 2010). Which reasonable strategies for setting

initial weights would profit such methods the most?

Meta-learning and Algorithm Portfolio Design: The term “meta-learning” (Vi-

lalta and Drissi, 2002) describes the enterprise of (a) characterizing the strengths and

weaknesses of learning methods vis-à-vis problem characteristics, with the intent of

(b) designing adaptive schemes that, given a problem, apply the method best suited

for it (Brodley, 1995; Pfahringer et al., 2000). Similarly, “algorithm portfolio” meth-

ods (Gomes and Selman, 2001) rely on applying several candidate algorithms to a

problem (either in series or in parallel) before identifying the most effective choice or

combination. While existing work in these areas has largely been in the context of

supervised learning and search (Leyton-Brown et al., 2003; Xu et al., 2008), our article

is motivated by the meta-learning problem within sequential decision making.

Our experiments clearly show that there is a need for meta-learning within RL.

For example, Figure 11(c) succinctly conveys that Sarsa outperforms CMA-ES when

the expressiveness of function approximation is above a certain threshold, but that

the opposite is true below the threshold. Indeed our experiments unearth several other
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strengths and weaknesses of methods within the VF and PS classes. Additionally we

provide a hybrid algorithm, Seq, as a useful step towards combining the strengths of

these methods. Our results are validated on a parameterized learning problem that

is specifically designed to implement a methodology for meta-learning within RL. We

believe that this methodology can support the eventual development of effective al-

gorithm portfolio designs for sequential decision making, which currently appears a

rather formidable undertaking.

Automatic Parameter Tuning: While meta-learning operates at the macro scale

of choosing between methods, our experiments also underscore the gains obtained at

a micro scale by tuning method-specific parameters. In this work, we have employed

a search technique to optimize method-specific parameters such as learning rates and

population sizes. In practice, an agent would need to automatically tune these param-

eters while learning. In the context of PS methods, it is worth repeating that we find

existing code for CMA-ES quite adept in automatically setting and tuning several in-

ternal parameters in the algorithm. For VF methods, techniques for tuning learning

rates (Sutton and Singh, 1994; George and Powell, 2006; Hutter and Legg, 2008) and

eligibility traces (Downey and Scanner, 2010) have predominantly been derived and

validated for the case of finite MDPs. Our parameterized learning problem serves as

an excellent mechanism for prototyping adaptive schemes at more general settings in-

volving function approximation and partial observability.

Learning and Representation: With the purpose of solely comparing the “learning”

behavior of VF and PS methods — how they adapt a set of weights — in this study,

we have forced them to share a fixed, common representation. In particular we adopt a

linear function approximation scheme, whose expressiveness and generalization can be

carefully controlled. Our results show that VF and PS methods dominate at different

settings of these problem parameters.

While this approach facilitates sound experimental methodology, it must be noted

that in general the greatest success can be achieved by adapting the representation

itself while learning (Whiteson and Stone, 2006). Indeed Cobb and Bock (1994) argue

that representations favoring an expert agent might be unfavorable for an agent begin-

ning to learn. Integrating learning with adaptive representation is yet another area of

future work that our parameterized learning problem enables. In pursuing such work,

we would treat χ and w as internal to the learning agent, rather than extraneous. The

agent could potentially adapt these representational aspects by applying methods from

feature selection (Kolter and Ng, 2009; Petrik et al., 2010), structure learning (Degris

et al., 2006; Diuk et al., 2009) and manifold learning (Mahadevan, 2009).

In taking steps toward the automated application of RL methods to problems, the

issues discussed above are all relevant to consider. We hope that future work will make

progress along all these directions by extending the ideas presented in this article.

6 Related Work

In this section, we discuss related work in the context of parameterized learning prob-

lems and empirical evaluations in RL.
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In an early article, Cohen and Howe (1988) consider the strong coupling that ex-

ists in many disciplines of AI between problem types and method instances. While

formulating guidelines for the evaluation of methodological contributions to the field,

they argue the need to precisely characterize the set of problems on which a method is

expected to be successful, and symmetrically, the approaches that are likely to succeed

on a given class of problems. As mentioned in Section 1, Langley (1988) makes a similar

observation in the specific context of machine learning.

Parameterized learning problems have been used in the literature to study the ef-

fects of factors such as dimensionality and noise. For example, Spall (2003) extensively

uses the “Rosenbrock” function while comparing the performance of optimization al-

gorithms in his textbook. The “Sphere” function discussed by Beyer (2000) has served

as a standard benchmark for evolutionary algorithms.

The work within the RL literature that is philosophically closest to the contribu-

tion of this article is the notion of “generalized environments” proposed by Whiteson

et al. (2011). Here, too, the authors argue against “environment overfitting”, whereby

methods tend to get evaluated on problems that favor them, but the broader scope

of their applicability, especially their weaknesses, are not easy to gauge. A generalized

environment represents a formally defined distribution of environments: the objective

is to develop methods that perform well over the entire distribution. Whereas the

motivation for generalized environments comes from realistic tasks such as helicopter

control and Tetris, the apparatus developed in this article examines the performance

of learning methods in a carefully-designed, controllable, abstract setting. Our results

underscore that qualitatively different learning methods excel in different regions of the

problem space, while teasing apart effects that method-specific parameters introduce.

The empirical approach we adopt in this article to characterize the interactions

between learning problems and methods is complemented by theoretical formulations

designed with a similar objective. Littman (1993) characterizes agents and environ-

ments based on the amount of memory they can use and the length of the horizon

for which they seek to optimize rewards. He then considers several interesting classes

of problems — for example, those with nonstationary environments — that fit within

this formalization. Ratitch and Precup (2003) define environmental properties such as

state transition entropy and forward controllability, and investigate how these proper-

ties bear on the exploration strategy of a learning agent. To the best of our knowledge,

generalization and function approximation have not been addressed through similar

theoretical formulations.

The main difference between our comparative study and others in the RL litera-

ture is that our parameterized learning problem enables us to evaluate the effects of

individual parameters while keeping others fixed. For example, in most related studies,

methods typically use different function approximation schemes, thereby introducing

an additional qualification for comparing them. Also, our formulation allows us to

control problem parameters continuously along a scale from “high” to “low”; in the

studies we shortly list, comparisons are typically between two or three distinct task

settings. In this sense, our article answers the call put forth by Togelius et al. (2009)

for parameterizable benchmarks, and affirms their basic conjectures on the strengths

and weaknesses of “ontogenetic” (similar to VF) and “phylogenetic” (similar to PS)

methods. In addition our results shed light on hitherto unexplored questions such as

the effects of optimistic initialization when used in conjunction with generalization. We

proceed to briefly list a number of studies comparing RL algorithms.
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Moriarty et al. (1999) apply a suite of “Evolutionary Algorithms for Reinforcement

Learning” (EARL) to a simple grid-world MDP, and compare results with Q-learning.

Policies are represented using lists of rules or neural networks, which are evolved using

standard genetic operators. The main conclusion of their study is that EARL is more

suited to tasks with large state spaces (but represented compactly), tasks with incom-

plete state information, and tasks with nonstationary returns. Whiteson et al. (2010)

undertake a comparative study between Sarsa(0) and NEAT (Stanley, 2004), a policy

search method. These methods are compared on the benchmark tasks of Keepaway

soccer (Stone et al., 2005) and Mountain Car (Sutton and Barto, 1998). Their findings

are that sensor noise affects the final performance of Sarsa(0) more than NEAT, and

indeed that stochasticity has the opposite effect, as policy evaluations under NEAT

become more noisy.

Heidrich-Meisner and Igel (2008a) compare the natural actor-critic method with

CMA-ES on a pole-balancing task. Both methods are “variable metric”; i.e., they are

insensitive to linear transformations of the parameter space. The methods achieve

comparable results, but CMA-ES is found to be less sensitive to initial values for the

policy, which has a small number of parameters. Similar results are registered in the

noisy Mountain Car task (Heidrich-Meisner and Igel, 2008b). A more extensive suite

of comparisons on single and double pole-balancing tasks (with hidden state) is carried

out by Gomez et al. (2008). The methods compared are evolutionary algorithms such

as CoSyNE, NEAT, ESP, and SANE, along with Q-learning, Sarsa, recurrent policy

gradient, random weight guessing, and “Value and Policy Search” (VAPS) (Baird and

Moore, 1999). The findings reinforce the expectation that under partial observability,

evolutionary algorithms dominate model-free value function-based methods such as Q-

learning and Sarsa. As with our Seq algorithm, a number of approaches, both empirical

and theoretical, have been proposed to combine the strengths of qualitatively different

learning approaches (Guestrin et al., 2002; Konda and Tsitsiklis, 2003; Whiteson and

Stone, 2006).

7 Summary

A large number of reinforcement learning (RL) tasks we face in the real world cannot

be modeled and solved exactly as finite MDPs, which support theoretical guarantees

such as convergence and optimality. The objective of learning in these tasks has to

be rescaled to realizing policies with “high” expected long-term reward in a “sample

efficient” manner, as determined empirically. Consequently it becomes necessary to

characterize the performance of different learning methods on different problems.

As a framework to conduct empirical studies in RL, we introduce parameterized

learning problems, in which the factors influencing the performance of a learning algo-

rithm can be controlled systematically through targeted studies. The main merits of

our experimental methodology are that (a) the designed task and learning framework

are easy to understand; (b) we may examine the effect of subsets of problem parame-

ters while keeping others fixed; (c) we can benchmark learned policies against optimal

behavior; and (d) the learning process can be executed in a relatively short duration

of time, thereby facilitating extensive experimentation.

In particular we design a parameterized learning problem to evaluate the effects of

partial observability and function approximation, which characterize a sizeable fraction

of realistic RL tasks. On this problem, we evaluate various methods from the classes of
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on-line value function-based (VF) methods and policy search (PS) methods. Through a

series of carefully-designed experiments, we obtain clear patterns separating the learn-

ing methods considered. A novel aspect of our study is a search procedure that enables

us to find the best method-specific parameters (such as learning rates and population

sizes) for a given problem instance. Largely made possible by the relative simplicity

of our simulation, the search procedure uncovers interesting patterns relating problem

instances and method-specific parameters.

Within the VF class, we find that Sarsa and Q-learning perform better than Ex-

pected Sarsa (ExpSarsa) when learning with generalization and function approxima-

tion. Within the PS class, we find that CMA-ES and the cross-entropy method (CEM)

achieve significantly better performance than a genetic algorithm (GA); CMA-ES is

more robust to its parameter settings than CEM. Comparing Sarsa (from VF) and

CMA-ES (from PS), we find that the former enjoys a higher speed of learning, and

also better asymptotic performance, when the learner is provided an expressive repre-

sentation. On the other hand, CMA-ES is significantly more robust to severely deficient

representations. Both methods suffer noticeably when state noise is added; their rel-

ative performance is additionally determined by the width of generalization in the

representation.

Our experiments highlight several promising lines of inquiry involving generaliza-

tion, representation, meta-learning, initial weight settings, and parameter tuning. By

contributing a novel evaluation methodology and a preliminary set of results obtained

using it, our article is oriented towards ultimately constructing a field guide for the

application of RL methods in practice. The experiments we have reported in this article

are part of an ongoing study, which we plan to extend to other classes of methods, in-

cluding model-based and batch methods, actor-critic architectures, and policy gradient

techniques.
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A Effect of α0 and ǫ0 on Methods in VF

The plots below show the effect of the initial learning rate α0 and exploration rate ǫ0 on the
learned performance of different methods in VF. Intensity ranges are indicated to the right
of each plot. Under I1, all the methods use θ0 = 10; under I2, they use θ0 = 0.5; under I3,
they use θ0 = 5. We observe that under instance I1, Sarsa(0), Q-learning(0), and ExpSarsa(0)
all achieve normalized performance values close to 1. Under I2, ExpSarsa(0) and ExpSarsa(1)
perform best at low values of α0 and ǫ0.
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B Effect of #trials and #gens on Methods in PS

The plots below show the effect of #trials and #gens on the performance of different policy
search methods. Intensity ranges are indicated to the right of each plot. Under RWG, only
#trials is varied (#gens = 50000

#trials
); the mean performance is plotted with one standard error.

The methods all show noticeable variance in performance over the ranges plotted, underscoring
the need for careful tuning. For all methods, the highest performance is under problem instance
I2. We see that CMA-ES performs better on average, over the parameter ranges plotted, than
both CEM and GA.
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