CS 345 - Programming Languages
Fall 2010

Homework #7

Due: 2pm CST (in class), December 2, 2010

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Science Department Code of Conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

Late submission policy

This homework is due at the beginning of class on December 2. All late submissions
will be subject to the following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 2pm on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments any way you want: submit four assignments 1 day late, submit one assignment
3 days late, etc. After your 3 days are used up, no late submissions will be accepted and you
will automatically receive 0 points for each late assignment.

You may submit late assignments to Vitaly Shmatikov (CSA 1.114—slide under the door
if the office is locked). If you are submitting late, please indicate how many late
days you are using.

Write the number of late days you are using:

Homework #7 (35 points)

Problem 1 (5 points)

The following webpage contains a “cross-site scripting” vulnerability:
http://www.cs.utexas.edu/ shmat/courses/cs345/vulnerable.html

Imagine that you want to trick your fellow CS 345 student into believing that the course
has a different collaboration policy.

Craft a URL that will cause the above website to display an alternate collaboration
policy. You may assume that your victim will visit your webpage and click on a special link
that you have created. This link must point to the above page. When the victim clicks on
it, he should see the above page, but the displayed collaboration policy should be different.

IMPORTANT: Do not point your link to a modified copy of the above page. Your link
should point to http://www.cs.utexas.edu/ " shmat/courses/cs345/vulnerable.html, or
you will get no credit for this problem.

Problem 2
Consider the following PHP script for logging into a website:

$username = addslashes($_GET [user]);
$password = addslashes($_GET [pwd]);
$sql = "SELECT * FROM usertable
WHERE username= ’$username’ AND password = ’$password’ ";
$result = $db->query($sql);
if ($result->num_rows > 0) { /* successful login */ }
else { /* login failed */ }

Problem 2a (2 points)

What does the PHP function addslashes do? What is the purpose of calling it in the above
code?

Problem 2b (3 points)

In Chinese, Korean, and Japanese unicode character sets, some characters are encoded as
single bytes, while others are double bytes. For example, the database interprets 0x5C as \,
0x27 as ’, 0x5C27 as \’, but 0xBF5C is interpreted as a single Chinese character.

Give an example of a username that will successfully subvert the above authentication
code.

Problem 2c (2 points)

How should addslashes be implemented to prevent SQL injection attacks?

Problem 3

In Simula, a class is a procedure that returns a pointer to its activation record. Simula
prefixed classes are a precursor to C++ derived classes, providing a form of inheritance.

This question asks about how inheritance might work in an early version of Simula,
assuming that the standard static scoping mechanism associated with activation records is
used to link the derived class part of an object with the base class part of the object.

Sample Point and ColorPt classes are given in the textbook (Section 11.2). For the
purpose of this problem, assume that if cp is a ColorPt object, consisting of a Point ac-
tivation record followed by a ColorPt activation record, the access link of the parent class
(Point) activation record points to the activation record of the scope in which the class
declaration occurs, and the access link of the child class (ColorPt) activation record points
to the activation record of the parent class.

Problem 3a (3 points)

Fill in the missing information in the activation records (depicted below), which are created
by executing the following code:

ref (Point) r;

ref (ColorPt) cp;

r :- new Point(2.7, 4.2);

cp :- new ColorPt(3.6, 4.9, red);
cp.distance(r);

Remember that function values are represented by closures, and that a closure is a pair
consisting of an environment (pointer to an activation record) and compiled code. In this
drawing, a bullet (o) indicates that a pointer should be drawn from this slot to the appro-
priate closure. Since the pointers to activation records cross and could become difficult to
read, each activation record is numbered at the far left. In each activation record, place the
number of the activation record of the statically enclosing scope in the slot labeled “access
link.” The first two are done for you. Also use activation record numbers for the environment
pointer part of each closure pair. Write the values of local variables and function parameters
directly in the activation records.

Activation records Closures Compiled code
© T (1)
cp (3)
@ Point(. . .) access link | (0)
X
y ((), o) lcode for equals
equals °
distance ° ((), o)
@) Point part of cp | access link | (0)
X
y ((),) | code for distance |
equals °
distance o ((), o)
©) ColorPt(. ..) access link | ()
c ((), o) ’code for cpt equals‘
equals °
@ cp.distance(r) access link | ()
q (r)

Problem 3b (2 points)

The body of distance contains the expression
sqrt((x - q.x)**2 + (y - q.y)**2)

which compares the coordinates of the point containing this distance procedure to the
coordinate of the point ¢ passed as an argument. Explain how the value of x is found when
cp.distance(r) is executed, mentioning specific links in your diagram. What value of x is
used?

Problem 3c (2 points)

The above illustration shows that a reference cp to a colored point object points to the
ColorPt part of the object. Assuming this implementation, explain how the expression
cp.x can be evaluated. Explain the steps used to find the right x value on the stack, starting
by following the pointer cp to activation record (3).

Problem 3d (2 points)

Explain why the call cp.distance(r) only needs access to the Point part of cp and not
the ColorPt part of cp.

Problem 4

We can compare Smalltalk interfaces to classes using protocols, which are lists of operation
names (selectors). When a selector allows parameters, as in at: put:, the selector name
includes the colons but not the spaces. More specifically, if dict is an updatable collection
object, such as a dictionary, then we could send dict a message by writing dict at:’cross’
put:’angry’. (This makes our dictionary definition of “cross” the single word “angry.”)
The protocol for updatable collections will therefore contain the seven-character selector
name at:put: . Here are some example protocols:

map : {fnumElems, contains:, at:put:, get:, remove:}
set : {fnumElems, contains:, add:, remove:}
multiset : {fnumElems, contains:, count:, add:, remove:}
array : {fnumElems, at:put:, get:}
simple_collection : {fnumElems}

Briefly, a map represents a function from a set of integer keys to a set of values. It can be
sent the message isEmpty to test whether its domain is empty, returning true if empty and
false otherwise; contains: tests whether a given key is part of the domain; at:put: adds
a key/value mapping to the map; get: fetches the value associated with the given key, and
remove: removes the mapping from the given key. A set object represents a set of integers,
where the contains:, add: and remove: methods test membership, add an element, and
remove an element respectively. Multisets are like sets except they may contain multiple
copies of any given element, which we can quantify using the count: method. Arrays are
objects where the at:put: method is used to update elements of the array, and the get:
method is used to retrieve elements of the array. The simple _collection class just collects
methods that are common to all the other classes. We say that the protocol for A conforms
to the protocol for B if the set of A selector names contains the set of B selector names.

Problem 4a (3 points)

Draw a diagram of these classes, ordered by protocol conformance. You should end up with
a graph that looks like William Cook’s drawing shown in the textbook, without the dotted
arrows showing inheritance.

Problem 4b (2 points)

Choose two classes, A and B, from your diagram from part (a) such that B conforms to
the protocol for A. Describe briefly, in words, a way of implementing each class so that the
implementation of B inherits from the implementation of A.

Problem 4c (2 points)

Choose two classes, A and B, from your diagram from part (a) such that neither conforms
to the protocol of the other. Describe briefly, in words, a way of implementing each class so
that the implementation of A inherits from the implementation of B.

Problem 4d (2 points)

Choose two classes, A and B, from your diagram from part (a) such that B conforms to
the protocol for A. Describe briefly, in words, a way of implementing each class so that the
implementation of A inherits from the implementation of B.

Problem 5

Smalltalk has a mechanism for “undefining” a method. Specifically, if a class A has method
m, then a programmer may cancel m in subclass B by writing:

m:
self shouldNotImplement

With this declaration in subclass B, any invocation of m on a B object will result in a
special error indicating that the method should not be used.

Problem 5a (2 points)

What effect does this feature of Smalltalk have on the relationship between inheritance and
subtyping?

Problem 5b (3 points)

Suppose class A has methods m and n, and method m is canceled in subclass B. Method n
is inherited and not changed, but method n sends the message m to self.

What do you think happens if a B object b is sent a message n? There are two possible
outcomes—what are they? Which one do you think the designers of Smalltalk would have
chosen and why?

