
CS 345 - Programming Languages
Fall 2010

MIDTERM #2

November 9, 2010

DO NOT OPEN UNTIL INSTRUCTED

YOUR NAME:

Collaboration policy

No collaboration is permitted on this midterm. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Sciences department code of conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

1

Midterm #2 (85 points)

Problem 1 (15 points)

Circle only one of the choices (3 points each).

1. TRUE FALSE Mark-sweep garbage collection is incremental, performed ev-
ery time a reference is updated.

2. TRUE FALSE With polymorphic functions in ML, a separate copy of the
function is generated for each type with which the function
is used.

3. TRUE FALSE Each Java object is associated with a monitor.

4. TRUE FALSE Deadlock cannot occur in a Java program that does not use
synchronization.

5. TRUE FALSE Closures are necessary in any Scheme implementation.

Problem 2 (20 points)

Define the following terms:

Overloading:

Parametric polymorphism:

Race condition:

No-Side-Effects (Declarative, Pure Functional) Language Test:

Horn clause:

2

Problem 3 (6 points)

Which two features of functional programming languages are highlighted by John Hughes as
contributing significantly to modularity?

Which of these features is not supported by Scheme?

Problem 4

Consider the following recursively defined Scheme function, where list2 is a function that
returns a 2-element list:

(set zip (lambda (l1 l2)

(if (or (null? l1) (null? l2)) nil

(cons (list2 (car l1) (car l2))

(zip (cdr l1) (cdr l2))))))

The zip function takes two lists and returns a list of 2-element lists. For example,

(zip ’(3 4 5) ’(hi there sue sam)) => ’((3 hi) (4 there) (5 sue))

Problem 4a (6 points)

Write zip in ML using pattern matching. The result should be a list of 2-element tuples.
You may assume that the input lists are of equal length. Use the following implementation
of length as a guide:

fun length [] = 0

| length (x::xs) = 1 + length xs;

3

Problem 4b (6 points)

The type of length is ’a list -> int. What is the type of zip?

Problem 5 (5 points)

Describe how reference counting could be used for garbage collection in evaluating the fol-
lowing Scheme expression:

(car (cdr (cons (cons a (cons b c)) (cons d e))))

where a,b,c,d,e are previously defined names for cells whose reference counts are greater
than 0 (i.e., they do not become garbage). Assume that the final result of evaluation is not
garbage, either. How many of the four cons cells can be garbage-collected?

Problem 6

Problem 6a (8 points)

Evaluate the following Scheme expressions:

(car (car (cdr (cdr (a b (c d) e (f g))))))

((lambda (f x y) (f x y)) * 2 (+ 3 2))

4

Problem 6b (8 points)

Redefine the following let and let* expressions using lambda, and evaluate the resulting
lambda expressions.

(define x 4)

(define y 2)

(let ((x 6) (y x) (z (+ x y))) (+ x y z))

(let* ((x 6) (y x) (z (+ x y))) (+ x y z))

Problem 6c (6 points)

Rewrite the following function using foldl/foldr. Be sure that the order of the result
list is the same as for the original function. You can assume a function reverse is
already defined if you need it.

(define (map f lst)

(if (empty? lst) ’()

(cons (f (car lst)) (map f (cdr lst))))))

5

Problem 7 (5 points)

Consider the following Prolog implementation of append:

append([X|Xs], Ys, [Z|Zs]) :- append(Xs,Ys,Zs), X=Z.

append([], Ys, Ys).

Why is this implementation potentially problematic?

6

