Stuxnet

Vitaly Shmatikov

(based on Symantec’s “Stuxnet Dossier”)
CVE-2010-2772

“Siemens Simatic WinCC and PCS 7 SCADA system uses a hard-coded password, which allows local users to access a back-end database and gain privileges, as demonstrated in the wild in July 2010 by the Stuxnet worm”
MS10-046 Vulnerability

Microsoft Security Bulletin MS10-046

Vulnerability in Windows Shell Could Allow Remote Code Execution
The vulnerability could allow remote code execution if the icon of a specially crafted shortcut is displayed ... This security update is rated Critical for all supported editions of Microsoft Windows.

First disclosed in CVE-2010-2568 (Jun 30, 2010)

Windows Shell in Microsoft Windows XP SP3, Server 2003 SP2, Vista SP1 and SP2, Server 2008 SP2 and R2, and Windows 7 allows local users or remote attackers to execute arbitrary code via a crafted (1) .LNK or (2) .PIF shortcut file, which is not properly handled during icon display in Windows Explorer, as demonstrated in the wild in July 2010, and originally reported for malware that leverages CVE-2010-2772 in Siemens WinCC SCADA systems.
Stuxnet Pre-History

◆ November 20, 2008: Zlob Trojan exploits an unknown vulnerability in Windows shortcuts (LNK)
 • Later identified as MS10-046

◆ April 2009: security magazine Hakin9 describes a vulnerability in Windows printer spooler service
 • Later identified as MS10-061

◆ June 22, 2009: earliest version of Stuxnet seen
 • Does not use MS10-046, driver not signed
Stuxnet Timeline (2010)

- January 25: signed Stuxnet driver, valid certificate from Realtek Semiconductor
- June 17: Antivirus company from Belarus reports a new USB rootkit TmpHider
- July 16: Microsoft issues MS10-046
 - Shortcut vulnerability
- July 16: VeriSign revokes Realtek certificate
- July 17: Stuxnet driver with valid certificate from JMicron Technology
Stuxnet Timeline Cont’d (2010)

- July 19: Siemens says they are investigating malware affecting their WinCC SCADA system
 - SCADA = control of industrial machinery
- September 14: Microsoft issues MS10-061
 - Print spooler vulnerability
Stuxnet Firsts

- First to exploit multiple zero-day vulnerabilities
- First to use stolen signing keys and valid certificates of two companies
- First to target industrial control systems – or not?
 ... and hide the code from the operator
 ... and perform actual sabotage
- First PLC (programmable logic controller) rootkit
- First example of true cyber-warfare?
Industrial Control Systems

- Run automated processes on factory floors, power and chemical plants, oil refineries, etc.
- Specialized assembly code on PLCs (Programmable Logic Controllers)
 - PLCs are usually programmed from Windows
- Not connected to the Internet ("air gap")
Target: **SIEMENS SCADA**

- Each PLC is configured and programmed in a unique manner
- **Stuxnet targets a specific PLC control system**
 - SIMATIC PCS 7 Process Control System
 - Programmed using WinCC/STEP 7
Stuxnet Propagation Methods

- Initial infection via USB drive (jumps “air gap”)
 - Zero-day MS10-046 shortcut exploit + auto-execution

- Several network propagation methods
 - LAN: zero-day MS10-061 print spooler exploit or old MS08-67 RPC exploit (remember Conficker?)
 - Default password to Siemens WinCC database server
 - Network shares
 - Peer-to-peer communication and update mechanism

- Looks for and infects Windows machines running Step 7 control software
USB Infection Vectors

LNK Vulnerability (CVE-2010-2568)

Loaded from a control panel file (CPL) pointing to malicious DLL

Self-executing AutoRun.Inf

```
?AVZdhnpIdcahnGvqzdhrpnpldcahn@gfjefwq@sr@@
[autorun]
objectDescriptor=(B315537-63A8-9512-99A9-2F4677235A44)
Menu=command=\AUTORUN.INF
Menu=\%windir\%system32\shell32.dll\,8496
UseAutoPLAY=0
```
Bypassing Intrusion Detection

- Calls LoadLibrary with a special file name that does not exist
- LoadLibrary fails, but Ntdll.dll has been hooked to monitor for the special file names
- These names are mapped to another location where Stuxnet previously decrypted and stored a DLL file
Gaining Admin Privileges

- If running without administrative privileges, uses zero-day vulnerabilities to become an admin
 - Win 2000, XP: MS10-073 keyboard layout vulnerability
 - Vista, Windows 7: MS10-092 task scheduler vulnerability

- Injects code into a trusted Windows process
 - LSASS or Winlogon

- Injection method depends on the security product used on the infected host
 - Kaspersky KAV, McAfee, AntiVir, BitDefender, Etrust, F-Secure, Symantec, ESET NOD32, PC Cillin
Exploiting MS10-073

- In Windows XP, a user-level program can load keyboard layout
- Integer in the layout file indexes a global array of function pointers (no bounds checking, natch)
 - Can use this to call any function...
- Find a pointer to this array, find a pointer into user-modifiable memory, inject attack code there, use bad indexing to call modified function
 - Attack code will run with admin privileges
Exploiting MS10-092

◆ Users can create and edit scheduled tasks
◆ CRC32 checksum to prevent tampering
 • “… not suitable for protecting against intentional alteration of data” --- Wikipedia
◆ Modify user definition in the task to LocalSystem, pad until CRC32 matches the original

[credit: iSEC Partners]
Infection Routine Flow

- Check CFG
- Reg key NTVDM Trace = 19790509
- Date < 06/24/2012
- Exits if finds a "magic" string
- Built-in expiration date
- Inject in services, call export 32
- Create global mutexes
- Create rootkit service reg keys
- Set file times
- Exit

- Inject in Step7 & call export 32
- Inject in Step7 & call export 32
- Injects Step7 projects

- Error
- Check OS
- Set DACL
- Set SACL
- Create global mutex
- Create .pnf & .cfg files
- Decrypt .pnf
- Oem7a.pnf
- Decrypt resource 201 & 242 & write to disk
- Compare running version number and version on disk
- Mrxcls.sys
- Mrxcls.sys

- Hides malicious files
- No set
- Date OK
- Date < 06/24/2012
- Files OK
- Decrypt & load self from disk. Call export 6 – get version
- Exit
32 “Exports” (Functionalities)

1. Infects connected removable drives, starts remote procedure call (RPC) server
2. Hooks APIs for Step 7 project file infections
4. Calls the removal routine (export 18)
5. Verifies if the threat is installed correctly
6. Verifies version information
7. Calls Export 6
9. Updates itself from infected Step 7 projects
10. Updates itself from infected Step 7 projects
14. Step 7 project file infection routine
15. Initial entry point
16. Main installation
17. Replaces Step 7 DLL
18. Uninstall Stuxnet
19. Infects removable drives
22. Network propagation routines
24. Check Internet connection
27. RPC Server
28. Command and control routine
29. Command and control routine
31. Updates itself from infected Step 7 projects
32. Same as 1
15 “Resources” (Methods)

<table>
<thead>
<tr>
<th>Resource ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>MrxNet.sys load driver, signed by Realtek</td>
</tr>
<tr>
<td>202</td>
<td>DLL for Step 7 infections</td>
</tr>
<tr>
<td>203</td>
<td>CAB file for WinCC infections</td>
</tr>
<tr>
<td>205</td>
<td>Data file for Resource 201</td>
</tr>
<tr>
<td>207</td>
<td>Autorun version of Stuxnet</td>
</tr>
<tr>
<td>208</td>
<td>Step 7 replacement DLL</td>
</tr>
<tr>
<td>209</td>
<td>Data file (%windows%\help\winmic.fts)</td>
</tr>
<tr>
<td>210</td>
<td>Template PE file used for injection</td>
</tr>
<tr>
<td>221</td>
<td>Exploits MS08-067 to spread via SMB</td>
</tr>
<tr>
<td>222</td>
<td>Exploits MS10-061 print spooler vulnerability</td>
</tr>
<tr>
<td>231</td>
<td>Internet connection check</td>
</tr>
<tr>
<td>240</td>
<td>LNK template file used to build LNK exploit</td>
</tr>
<tr>
<td>241</td>
<td>USB Loader DLL ~WTR4141.tmp</td>
</tr>
<tr>
<td>242</td>
<td>MRxnet.sys rootkit driver</td>
</tr>
<tr>
<td>250</td>
<td>Exploits undisclosed win32k.sys vulnerability</td>
</tr>
</tbody>
</table>
Windows Rootkit

◆ Goal: hide itself when copied to removable drive
◆ Extracts “Resource 201” as driver MrxNet.sys
 • This driver is digitally signed and registered as a service creating the following registry entry:
 – HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services \MRxNet\"ImagePath" = “%System%\drivers\mrxnet.sys”
◆ Driver filters out (hides) following files:
 • Files with .LNK extension, size of 4,171 bytes
 • Files named “~WTR[four digits].TMP”, size between 4Kb and 8Mb, the sum of the four digits is a multiple of 10
Realtek and JMicron

- Stuxnet drivers were signed using stolen keys of two Taiwanese semiconductor companies

- Allegedly located in the same office park
 - Why is this interesting?
Command and Control

- Tests if can connect on port 80 to www.windowsupdate.com, www.msn.com
- Connects to special domains
 - Previously pointed to servers in Malaysia and Denmark
 - Can be updated with other domain names
- Sends encrypted information about infected host
 - Time of infection, IP address and OS version, flag specifying if the host is part of a workgroup or domain, file name of infected Step 7 project
Remote Control of Stuxnet

1. Get 200 OK
2. Get index.php?data=[DATA]
 - Data: OS Version, Machine Name, Workgroup Name
 - Response Type 1: 200 OK execute RPC routine
 - Response Type 2: 200 OK encrypted binary code

1 & 2: Check internet connectivity
3: Send system information to C&C
4a: C&C response to execute RPC routine
4b: C&C response to execute encrypted binary code
How PLCs Are Programmed

- PLC is loaded with blocks of code and data
 - Code written in low-level STL language
 - Compiled code is in MC7 assembly

- The original s7otbxdx.dll is responsible for handling block exchange between the programming device and the PLC
PLC “Rootkit”

- Stuxnet replaces s7otbxdx.dll with its own DLL
 - Records blocks written to and read from PLC
 - Infects PLC by inserting its own blocks

- PLC “rootkit”
 - Hooks routines that read, write, and enumerate code blocks on PLC
 - Hides infection from PLC operator
Sabotage

- Checks if PLC controls a cascade of at least 33 frequency converter drives manufactured by a specific Iranian or Finnish company
 - A frequency converter drive controls speed of another device – used in water systems, gas pipelines, etc.
- Records normal behavior of PLC
- Executes sequences of commands that rapidly slow down or speed up motors
 - Sequence depends on detected manufacturer
- ... while replaying normal behavior to operator
Iranian Nuclear Program

◆ Sep 2010: “delays”
 • Warm weather blamed

◆ Oct 2010: “spies” arrested, allegedly attempted to sabotage Iran’s nuclear program

◆ Nov 2010: Iran acknowledges that its nuclear enrichment centrifuges were affected by a worm
 • Foreign minister: “Nothing would cause a delay in Iran's nuclear activities”
 • Intelligence minister: “enemy spy services” responsible
History of Stuxnet Propagation

◆ First wave of attacks targeted 5 organizations inside Iran, starting in June 2009
 • 10 initial infections
 • Shortest span between compile time and initial infection = 12 hours (median = 26 days)
◆ Multiple propagation mechanisms from there
◆ 12,000 resulting infections
◆ True target unknown
 • Possibly the underground enrichment facility at Natanz
Affected Systems

Percentage of Stuxnet-infected hosts with Siemens software installed

- Iran: 67.60%
- South Korea: 8.10%
- USA: 4.98%
- UK: 2.18%
- Indonesia: 2.18%
- Taiwan: 1.56%
- India: 1.25%
- Others: 12.15%
Stuxnet Infections Worldwide
Whodunit?

◆ Stuxnet will not infect systems that contain safe code 19790509

◆ Habib Elghanian
 • Leader of Iran’s Jewish community
 • Executed by firing squad as an Israeli spy on May 9, 1979
 • One of the first victims of the Islamic revolution

◆ “Symantec cautions readers on drawing any attribution conclusions. Attackers would have natural desire to implicate another party.”
Another Clue?

◆ Project path in Stuxnet driver:

 b:\myrtus\src\objfire_w2k_x86\i386\guava.pdb

 • Guava is a plant in the myrtle (myrtus) family

◆ Book of Esther in the Hebrew Bible

 • Esther (born Hadassah) learns that Haman, Persian prime minister, is planning to exterminate all Jews, but foils his plot and has him impaled

 • “Hadassah” is “myrtle” in Hebrew

◆ “Symantec cautions readers on drawing any attribution conclusions. Attackers would have natural desire to implicate another party.”
Flame

- Possibly related to Stuxnet, much more complex
- Exploits an **MD5 hash collision attack** on Microsoft Update code signing certificate
 - Much more about this later
- Targets mainly in Iran, but also in Lebanon, Syria, Sudan, Israel, and the Palestinian Territories
 - Purpose: espionage rather than industrial sabotage
 - Logs keystrokes, records audio, grabs GPS tags from photos...
 - Possibly developed by the NSA, CIA, and Israeli military as part of the “Olympic Games” campaign against Iranian nuclear program -- Washington Post