
CS 361S - Network Security and Privacy
Spring 2014

Homework #3

Due: 11am CDT (in class), May 1, 2014

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Deparment of Computer Science code of conduct can be found at
http://www.cs.utexas.edu/undergraduate-program/code-conduct.

Late submission policy

This homework is due at the beginning of class on May 1. All late submissions will be
subject to the following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 11am on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments (3 homeworks and 2 projects) any way you want: submit three assignments
1 day late, submit one assignment 3 days late, etc. After your 3 days are used up, no
late submissions will be accepted and you will automatically receive 0 points for each late
assignment.

You may submit late assignments to Vitaly Shmatikov or Oliver Jensen. If you are
submitting late, please indicate how many late days you are using.

Write the number of late days you are using:

1



Homework #3: Molvan̂ıa Forever (50 points)

Problem 1 (6 points)

It is easy to design an application-level gateway (proxy) for the FTP protocol. The proxy
decides, for example, whether an outsider should be able to access a particular directory in
the file system and issues a corresponding command to the inside file manager or refuses the
outsider’s request.

List three protocols that would be prohibitively difficult or impossible to proxy and
explain why.

Problem 2

Consider the following UNIX program (written in pseudo-code):

networkWrite();

while (..) {

networkRead();

if (...) fileRead();

else fileWrite();

if (... fileOpen() ...) ...;

else fileRead();

fileClose();

}

geteuid();

setuid();

In the above code, the system calls made by the program are networkWrite, networkRead,
fileRead, fileWrite, fileOpen, fileClose, geteuid, and setuid. Their arguments are omitted for
simplicity.

2



Problem 2a (3 points)

How can system call interposition prevent an attacker from exploiting this program to execute
a shell via the exec system call?

Problem 2b (6 points)

By looking at the program code, you notice that the program can only execute certain
sequences of system calls when it is running normally. For example, it never performs a
network read or write after calling setuid().

Write a regular expression that captures all legitimate sequences of system calls that this
program can make. Your expression should involve concatenation, alternation, and Kleene
star over the symbols NW, NR, FR, FW, FO, FC, GU, SU corresponding to the system calls
listed above.

Problem 2c (3 points)

How does system call interposition based on the regular expression you wrote above can help
enforce the following policy: “the program should never write to the network after reading
a file”? Give an example of an attack that such a policy might prevent.

3



Problem 3 (8 points)

Molvan̂ıan Organization for Security Defense (MOSDef) developed a new intrusion detection
system designed to detect rootkits and adware. For the purposes of this problem, assume
that the following three possibilities are exhaustive and mutually exclusive: either the host
is normal, or rootkit-infected, or adware-infected. After conducting large-scale experiments,
MOSDef computed the following accuracy rates for its product:

How this host is classified
Type of host Rootkit Adware Normal

Rootkit 85% 5% 10%
Adware 5% 90% 5%
Normal 5% 5% 90%

For example, when the MOSDef system analyzes a rootkit-infected host, it correctly
classifies the host as rootkit-infected with probability 85%, misclassifies it as adware-infected
with probability 5%, and misclassifies it as normal with probability 10%.

For the purposes of this problem, assume that 1% of all hosts are infected with rootkits,
2% are infected with adware, and the remaining 97% are normal.

When the MOSDef system announces that it has detected adware presence, what is the
probability that the host is, in fact, normal? Give your calculations.

Problem 4 (6 points)

Molvan̂ıan Telecom encrypts voice-over-IP datagrams using a stream cipher based on the
following pseudo-random generator:

The generator is initialized with the key, the first 4 bits of the keystream are discarded,
and the rest is used for encryption.

4



Suppose you want to completely recover the key using a known-plaintext attack. How
long should your plaintext be? How would the attack proceed (describe all details)?

Problem 5 (6 points)

Having noticed that the mathematical operations involved in RSA signing and encryption
algorithms are identical, Molvan̂ıan Institute for Advanced Cryptology released the following
implementation of the RSA signature scheme. Given a message m, their implementation
signs it simply by “decrypting” m with the RSA private key d, i.e., sig(m) = md mod n.

Recall that a signature scheme is secure if the attacker who does not know the private
key cannot produce a signature on any message m′ which was not signed by the holder of
the key—even if the attacker observed many legitimate signatures.

Does the Molvan̂ıan scheme meet this definition of security?

Problem 6 (6 points)

Molvan̂ıan Institute for Advanced Cryptology proposed their own variant of RSA encryption.
Recall that an RSA public key is a pair (n, e). To encrypt some message m, first generate a
fresh random value r of the same length as m. Use r as if it were a one-time pad to encrypt
m (i.e., let s = m ⊕ r), then encrypt r using plain RSA (i.e., let t = re mod n). The
ciphertext is the (s, t) pair.

To decrypt the ciphertext (s, t), first compute r = td mod n, where d is the RSA private
key, then the compute plaintext m = r ⊕ s.

Is this encryption scheme secure against the chosen-plaintext attack? Explain.

5



Problem 7 (6 points)

Remember the cloning attack on jPhone from Homework 1? The attacker (passive or active)
gathers enough information from one or two phone calls to create a clone of the caller’s phone.
Later on, the attacker uses the clone to impersonate the victim to the cell phone company
and make untraceable calls billed to the victim’s number, even when the victim’s own phone
is switched off.

Molvan̂ıan Telecom (MT) has released another version of its popular jPhone. For au-
thentication, it uses the Digital Signature Standard (DSS). Each jPhone stores its own DSS
private key x and secret random value k. Both are selected at random when the phone is
manufactured and burned into tamper-proof read-only memory. The public key correspond-
ing to x is stored in MT’s database.

When a jPhone initiates a call, MT challenges it with a fresh, random challenge C. The
phone executes the DSS signing algorithm and responds with sigx(C), i.e., challenge C is
digitally signed with the phone’s private key. MT verifies the signature using the phone’s
public key, and, if verification succeeds, completes the call and bills the phone.

Is jPhone secure against cloning? Give a detailed explanation.

6


